

Abstract

Introduction: Monoclonal antibodies (mAbs) were generated via a target-unbiased approach based on intact cell immunization with cell lines, fetal progenitor cells, and cancer stem cells. An immunohistochemical (IHC) screen for cancer-specific candidates identified a panel of anti-B7-H3 (CD276) mAbs with highly differential tumor-versus-normal tissue binding. B7-H3 expression was observed in tumor epithelium as well as tumorassociated vasculature and stroma. Consistent with our findings, B7-H3 has been reported to be overexpressed in a growing number of solid cancers, including breast, lung, pancreatic, prostate, kidney, and colon cancer, as well as melanoma and glioblastoma. Furthermore, overexpression of B7-H3 has been correlated with disease severity and poor outcome in a number of these cancer types. A humanized version of an anti-B7-H3 mAb engineered with an enhanced Fc domain (enoblituzumab or MGA271¹) and a humanized Dual-Affinity Re-Targeting (DART[®]) protein that recognizes both B7-H3 and CD3 and redirects T cells to kill B7-H3-expressing cells (MGD009) are being investigated in Phase 1 clinical studies. In this nonclinical study, we evaluated the therapeutic potential of anti-B7-H3 antibody-drug conjugates (ADCs) toward B7-H3-expressing solid cancers.

Methods: A panel of anti-B7-H3 mAbs was screened for internalization and a subset of mAbs that were efficiently internalized by tumor cells was identified. These mAbs were converted to ADCs via chemical conjugation; in vitro and in vivo activity studies were then conducted with a range of tumor cell lines representing human cancer types that overexpress B7-H3.

Results: The anti-B7-H3 ADCs exhibited specific, dose-dependent cytotoxicity toward B7-H3-positive tumor cell lines in vitro, including breast, lung, ovarian, pancreatic, and prostate cancer lines, with IC₅₀ values generally in the sub-nM range. Cytotoxicity was not observed with cell lines lacking B7-H3 expression. The anti-B7-H3 ADCs exhibited potent antitumor activity in vivo, resulting in tumor stasis and tumor regression in mice bearing B7-H3-positive human breast, lung, and ovarian tumor xenografts.

Conclusion: Anti-B7-H3 ADCs exhibited dose-dependent cytotoxicity in vitro and potent antitumor activity in vivo toward a range of B7-H3-expressing tumor cell lines representing cancer types that overexpress B7-H3. Our findings demonstrate that ADCs targeting B7-H3 may serve as potential therapeutics for B7-H3-expressing solid cancers.

Introduction

- mAbs were generated via immunization of mice with viable human fetal progenitor cells or tumor initiating/cancer stem-like cells (CSLCs)
- An IHC screen for cancer-specific mAbs identified a panel of anti-B7-H3 (CD276) reactive mAbs with highly differential tumor-versus-normal tissue binding
- Strong B7-H3 expression was observed in tumor epithelium of a large range of solid cancers, as well as in tumor-associated vasculature and stroma
- A subset of anti-B7-H3 mAbs were efficiently internalized by tumor cells in vitro. Together with their favorable tumor-versusnormal tissue reactivity, this subset was selected for evaluation for an ADC approach
- **Objective:** Evaluate the therapeutic potential of anti-B7-H3 ADCs toward solid cancer by conducting in vitro and in vivo activity studies with anti-B7-H3 ADCs across a range of tumor cell lines representing human cancer types that overexpress B7-H3

MAb generation

- Internalization assay
- ADC generation
- In vitro cytotoxicity
- In vivo activity width x height)/2
- Pharmacokinetics concentrations

Antibody/Target Discovery Platform

Presented at the 2016 American Association for Cancer Research Annual Meeting, April 16–20, 2016, New Orleans, Louisiana

Anti-B7-H3 Antibody-Drug Conjugates as Potential Therapeutics for Solid Cancer

Deryk Loo, Juniper Scribner, Thomas Son, Jeff Hooley, Tim Hotaling, Michael Chiechi, Pam Li, Anushka De Costa, Yan Chen, Ann Easton, Francine Chen, Bhaswati Barat, Valentina Ciccarone, James Tamura, Mark Kubik, Scott Koenig, Syd Johnson, Paul A. Moore, and Ezio Bonvini MacroGenics, Inc., Rockville, MD and South San Francisco, CA

Methods

- Immunizations with intact viable fetal progenitor and tumor initiating/CSLCs were performed as previously described²

– Internalization was performed in a 5-day assay using saporinconjugated anti-mouse Fab at 1:1 or 10:1 Fab-ZAP:Test mAb ratio, as per manufacturer's protocol (Advanced Targeting Systems)

– Anti-B7-H3 mAbs (chimeric human lgG1) were converted to ADCs via cysteine-conjugation to the cleavable auristatin E linker/payload vc-MMAE to an average drug-to-antibody ratio of 4.5-4.7 (Concortis Biosystems)

-7-day in vitro cytotoxicity was quantified using Alamar Blue reagent, according to manufacturer's protocol (BioRad)

– Tumor cells (5 x 10⁶) were implanted subcutaneously into the flank of CD1 nude mice. When tumors reached ~150 mm³, mice were randomized and test articles were administered intraperitoneally. Tumors were measured twice weekly by orthogonal measurements with electronic calipers, with tumor volumes calculated as: (length x

– Non-tumor bearing CD1 nude mice were administered test articles intraperitoneally at a single dose of 5 mg/kg. Blood samples were collected over the course of 10 days and sandwich ELISAs were performed on sera to quantify total mAb and intact ADC

tumor cells in vitro selected for further evaluation

Lung Cancer

tumor-associated vasculature

	IH	C Summary
Cancer Type	B7-F	13 Total Positi
Head and Neck	19/19	100%
Kidney Cancer	77/78	99%
Glioblastoma	65/66	98%
Thyroid Cancer	34/35	97%
Melanoma	66/70	94%
Prostate Cancer	88/99	89%
Pancreatic Canc	er 69/78	88%
Lung Cancer	226/272	83%
Ovarian Cancer	59/79	75%
Breast Cancer	119/164	73%
Bladder Cancer	14/20	70%

B7-H3 is strongly expressed at a high frequency across a broad range of tumors

Potency observed against a range of B7-H3-positive tumor lines

IC ₅₀ (pM)*	Brea	ast Cancer	Melanoma	Non-S	mall Cell Lu	ing Cancer	Ovarian Cancer	Pancreatic Cancer	Prostate Cancer
	JIMT-1	MDA-MB-468	A375.S2	Calu-6	NCI-H1703	NCI-H1975	PA-1	Hs700T	DU145
Antibody Binding Sites**	1.1e6	4.2e5	7.5e5	8.5e5	8.1e5	4.8e5	6.1e5	2.1e6	2.4e5
MG.Ab.01-vc-MMAE	221	352	153	59	90	31	555	159	3770
MG.Ab.02-vc-MMAE	124	201	267	30	43	16	409	109	465
MG.Ab.03-vc-MMAE	735	1383	887	171	219	162	1795	303	2587
MG.Ab.04-vc-MMAE	9100	8095	703	995	1517	26976	8326	607	20153
*Alamar Blue cytotoxicity assay. **Antibody Binding Sites determined by Bangs QFACS Kit.									

Results

In Vivo Activity: NCI-H1703 Non-Small Cell Lung Cancer

	Treatment	IP Dose (mg/kg)	Schedule (Dosed Day 52)	T/C (
	MG.Ab.01-vc-MMAE	10	qdx1	28			
	MG.Ab.01-vc-MMAE	3	qdx1	22			
ograft	MG.Ab.01-vc-MMAE	1	qdx1	74			
MG.Ab.02-vo MG.Ab.02-vo MG.Ab.02-vo MG.Ab.03-vo MG.Ab.03-vo	MG.Ab.02-vc-MMAE	10	qdx1	0			
	MG.Ab.02-vc-MMAE	3	qdx1	11			
	MG.Ab.02-vc-MMAE	1	qdx1	70			
	MG.Ab.03-vc-MMAE	10	qdx1	32			
	MG.Ab.03-vc-MMAE	3	qdx1	4			
	MG.Ab.03-vc-MMAE	1	qdx1	76			
	T/C (%) = Percentage of tumor size relative to vehicle CR = Tumor volume ≤5 mm ³ during study						

In Vivo Activity: PA-1 Ovarian Cancer

Treatment	IP Dose (mg/kg)	Schedule (Dosed Day 42)	T/C (%)	CR	
MG.Ab.01-vc-MMAE	10	qdx1	0	6/7	
MG.Ab.01-vc-MMAE	3	qdx1	65	0/7	
MG.Ab.01-vc-MMAE	1	qdx1	105	0/7	
MG.Ab.02-vc-MMAE	10	qdx1	37	3/7	
MG.Ab.02-vc-MMAE	3	qdx1	76	1/7	
MG.Ab.02-vc-MMAE	1	qdx1	93	0/7	
MG.Ab.03-vc-MMAE	10	qdx1	11	5/7	
MG.Ab.03-vc-MMAE	3	qdx1	57	1/7	
MG.Ab.03-vc-MMAE	1	qdx1	113	0/7	
T/C (%) = Percentage of tumor size relative to vehicle CR = Tumor volume <5 mm ³ during study					

References

1. Loo D, et al. Clin Cancer Res. 2012 Jul 15;18(14):3834-45. **2.** Loo D, et al. Mol Cancer Ther. 2007 Mar;6(3):856-65.

Acknowledgements

ADCs were provided by Concortis Biosystems, San Diego, CA

PA-1 Xenograft

IHC Score 2+

s.com/events.cfm

6)	CR
	5/7
	3/7
	0/7
	6/7
	5/7
	0/7
	5/7
	6/7
	0/7

Treatment	IP Dose (mg/kg)	Schedule (Dosed Day 30)	T/C (%)	CR
MG.Ab.01-vc-MMAE	10	qdx1	3	5/7
MG.Ab.01-vc-MMAE	3	qdx1	13	1/7
MG.Ab.01-vc-MMAE	1	qdx1	65	0/7
MG.Ab.02-vc-MMAE	10	qdx1	4	1/7
MG.Ab.02-vc-MMAE	3	qdx1	23	0/7
MG.Ab.02-vc-MMAE	1	qdx1	70	0/7
MG.Ab.03-vc-MMAE	10	qdx1	26	2/7
MG.Ab.03-vc-MMAE	3	qdx1	7	0/7
MG.Ab.03-vc-MMAE	1	qdx1	80	0/7

T/C (%) = Percentage of tumor size relative to vehicle CR = Tumor volume ≤5 mm³ during study

Pharmacokinetics of B7-H3 ADCs

A375.S2 Xenograft

Antibody	Total A	ntibody	Intact ADC		
Antensouy	t _{1/2} (h)	AUC (h*µg/mL)	t _{1/2} (h)	AUC (h*µg/mL)	
MG.Ab.01-vc-MMAE	114.1	4,796	58.9	4,033	
MG.Ab.02-vc-MMAE	75.9	2,699	52.6	2,202	
MG.Ab.03-vc-MMAE	177.2	5,162	87.3	3,502	

• Auristatin E-conjugated B7-H3 ADCs are highly stable in mice

Conclusions

- B7-H3 is overexpressed in a wide range of solid cancers, including breast, lung, pancreatic, head and neck, prostate, kidney, and colon cancer, as well as in glioblastoma and melanoma
- Anti-B7-H3 auristatin E ADCs:
- Exhibited specific, dose-dependent cytotoxicity toward a wide range of B7-H3-positive tumor cell lines in vitro
- Demonstrated significant antitumor activity toward B7-H3-positive mouse tumor xenograft models of breast, lung, and ovarian cancers, as well as melanoma
- Showed typical pharmacokinetics in mice, with a half-life of ~2.2-3.6 days for the intact ADC

ADCs targeting B7-H3 may serve as potential therapeutics for the treatment of B7-H3-expressing malignancies