A Phase 1, First-in-Human, Open-Label, Dose Escalation Study of MGD013, a Bispecific DART[®] Molecule Binding PD-1 and LAG-3 in Patients with Unresectable or Metastatic Neoplasms

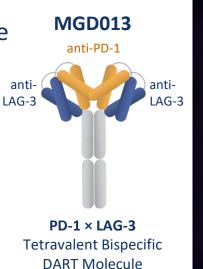
Jason J. Luke,¹ Manish R. Patel,² Erika Hamilton,³ Bartosz Chmielowski,⁴ Susanna Ulahannan,⁵ Hedy Kindler,⁶ Shakeela Bahadur,⁷ Philip Clingan,⁸ Girish Mallesara,⁹ Andrew Weickhardt,¹⁰ Scott Currence,¹¹ Linzhi Xu,¹¹ Sanjeev Kaul,¹² Francine Chen,¹¹ Paul A. Moore,¹¹ Ezio Bonvini,¹¹ Bradley J. Sumrow,¹¹ George Blumenschein¹³

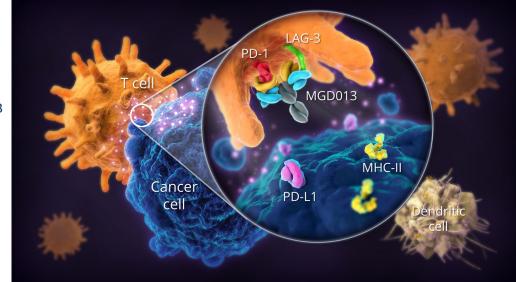
¹UPMC Hillman Cancer Center, Pittsburgh, PA; ²Florida Cancer Specialists/Sarah Cannon Research Institute, Sarasota, FL; ³Sarah Cannon Research Institute/Tennessee Oncology, Nashville, TN; ⁴Division of Hematology & Medical Oncology, Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA; ⁵SCRI Nashville/OUHSC Oklahoma City, Oklahoma City, OK; ⁶Division of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL; ⁷Banner MD Anderson Cancer Center, Gilbert, AZ; ⁸Southern Medical Day Care Centre, Wollongong, NSW, Australia; ⁹Calvary Mater Newcastle Hospital, Waratah, NSW, Australia; ¹⁰Austin Health, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia; ¹¹MacroGenics, Inc., Rockville, MD; ¹²Bio-ClinPharm Consulting, LLC. Cranbury, NJ; ¹³Department of Thoracic Head & Neck Medical Oncology, Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX.

#ASCO20 Slides are the property of the author, permission required for reuse.

ркезентер ву: 🛛 Jason J. Luke, MD, FACP @jasonlukemd 😏

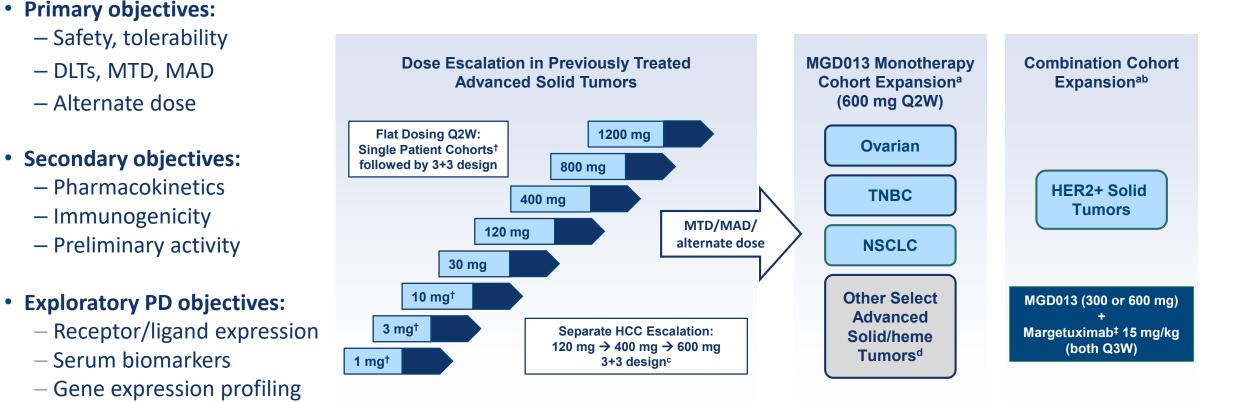
Jason J. Luke, MD, FACP


- Data and Safety Monitoring Board: TTC Oncology
- <u>Scientific Advisory Board:</u> 7 Hills, Actym, Alphamab Oncology, Kanaph, Mavu (now part of AbbVie), Onc.AI, Pyxis, Springbank, Tempest
- <u>Consultancy</u>: Abbvie, Akrevia, Algios, Array, Astellas, Bayer, Bristol-Myers Squibb, Eisai, EMD Serono, Ideaya, Incyte, Janssen, Merck, Mersana, Novartis, PTx, RefleXion, Regeneron, Silicon, Tesaro, Vividion
- <u>Research Support</u>: (all to institution for clinical trials unless noted) AbbVie, Agios (IIT), Array (IIT), Astellas, Bristol-Myers Squibb, CheckMate (SRA), Compugen, Corvus, EMD Serono, Evelo (SRA), Five Prime, FLX Bio, Genentech, Immatics, Immunocore, Incyte, Leap, MedImmune, MacroGenics, Necktar, Novartis, Palleon (SRA), Merck, Springbank, Tesaro, Tizona, Xencor
- <u>Travel</u>: Akrevia, Bayer, Bristol-Myers Squibb, EMD Serono, Incyte, Janssen, Merck, Mersana, Novartis, Pyxis, RefleXion
- <u>Patents</u> (both provisional): Serial #15/612,657 (Cancer Immunotherapy), PCT/US18/36052 (Microbiome Biomarkers for Anti-PD-1/PD-L1 Responsiveness: Diagnostic, Prognostic and Therapeutic Uses Thereof)



#ASCO20 Slides are the property of the author permission required for reuse.

Rationale for Dual Targeting of PD-1 and LAG-3


- Checkpoint molecules are leveraged by tumors or APCs to evade the immune system
- PD-1 and LAG-3 receptors are expressed on "exhausted" T-cells
 - Interactions with corresponding ligands negates anti-tumor T cell activity
- Synergy of anti-PD-1 + anti-LAG-3 mAbs in animal tumor models
 - Combination trials of anti-PD-1 plus anti-LAG-3 are ongoing
- MGD013, an investigational DART protein, targets PD-1 and LAG-3 with a single molecule
 - Greater synergistic T-cell activation (IFN-γ) with MGD013 compared with combination of individual constituents
- DART bispecific platform:
 - Stable diabody format
 - Multiple configurations & applications

#ASCO20 Slides are the property of the author permission required for reuse.

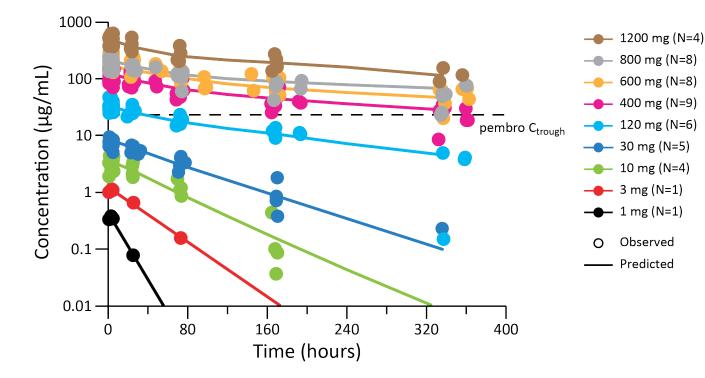
DLT = dose-limiting toxicity; MAD = maximum administered dose; MTD = maximum tolerated dose; IHC = immunohistochemistry; Q2W = every 2 weeks. ClinicalTrials.gov identifier: NCT03219268. ‡ Margetuximab is an investigational Fcoptimized mAb targeting HER2.^a Monotherapy and combination expansion cohorts are ongoing. ^b Combination cohort involved a one-step dose escalation followed by expansion. ^c Separate hepatocellular carcinoma (HCC) 3+3 dose escalation initiated after corresponding dose levels cleared in primary Dose Escalation. ^d Other expansion cohorts enrolling patients with SCCHN, SCLC, HCC, cholangiocarcinoma, cervical cancer, gastric/gastroesophageal junction carcinoma, and DLBCL. Data cutoff: April 25, 2020.

#ASCO20 Slides are the property of the author, permission required for reuse.

Baseline Demographics

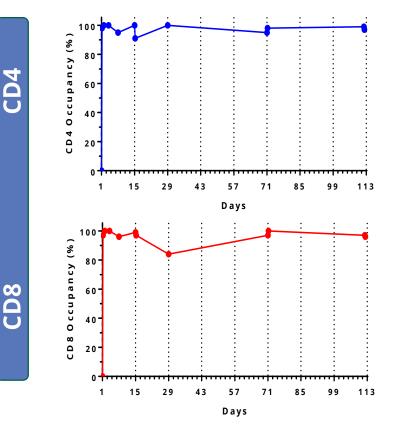
	Dose Escalation 1 -1200 mg Q2W (n=53)	Monotherapy Cohort Expansion 600 mg Q2W (n=205)	Combination Cohort Expansion MGD013 + Margetuximab (n=21)
Median age (range), years	64 (24, 84)	60 (27, 84)	62 (29, 83)
Gender, n (%) Male Female	32 (60.4) 21 (39.6)	74 (36.1) 131 (63.9)	7 (33.3) 14 (66.7)
ECOG PS, n (%) 0 1	22 (41.5) 31 (58.5)	60 (29.3) 145 (70.7)	12 (57.1) 9 (42.9)
Median prior lines of therapy (range)	2 (1, 9)	2 (1, 9) ^a	2 (1, 7)
Prior Checkpoint Inhibitor Yes No	23 (43.4) 30 (56.6)	55 (26.8) 139 (67.8)	1 (4.8) 20 (95.2)

^a Monotherapy Cohort Expansion median prior lines of therapy derived from n=200 patients (5 patients without this information available). Data cutoff: April, 25, 2020.



#ASCO20 Slides are the property of the author, permission required for reuse.

presented by: Jason J. Luke, MD, FACP @jasonlukemd 💟

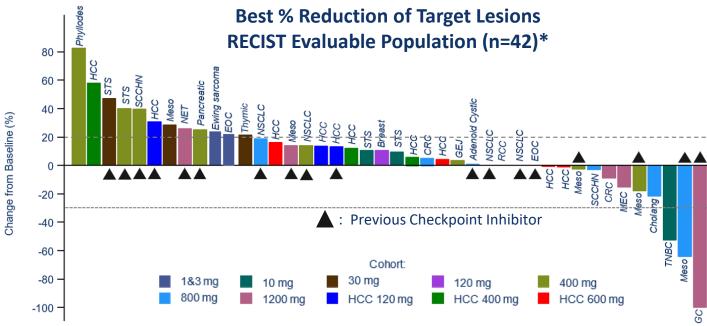

Pharmacokinetics and Receptor Occupancy

Linear PK (400-1200 mg dose range) and sustained receptor occupancy (≥120 mg)

Pharmacokinetics (1-1200 mg)

Receptor (PD-1) Occupancy (120 mg Q2W)

Estimated $t_{1/2}$ = 274 hours (~11 days)


pembro c_{trough} = published serum trough concentration of pembrolizumab at 2 mg/kg Q3W (23.6 μg/mL) [CDER, KEYTRUDA (pembrolizumab) Clinical Pharmacology and Biopharmaceutics Review(s). 2014]

#ASCO20

Slides are the property of the author, permission required for reuse.

MGD013 Dose Escalation: Results

* Based on patients with baseline and post-treatment tumor measurements. Data cutoff: April, 25, 2020

Confirmed Partial Responses (n=1, each):

- TNBC (10 mg)
- Mesothelioma (800 mg)
- Gastric Cancer (1200 mg).
- 18 patients with SD as best overall response (DCR = 48.8%)

Immune-Related Adverse Events of Special Interest (AESIs)

	No. (%) of Patients			
	All Grades (N=53)	<u>></u> Grade 3 (N=53)		
Rash	7 (13.2)	1 (1.9)		
Hypothyroidism	6 (11.3)	0		
Immune-mediated hepatitis	2 (3.8)	2 (3.8)		
Pancreatitis	1 (1.9)	1 (1.9)		
Colitis	1 (1.9)	1 (1.9)		
Adrenal insufficiency	1 (1.9)	1 (1.9)		
Hyperthyroidism	1 (1.9)	0		

- Well-tolerated with manageable irAEs
- Safety consistent with anti-PD-(L)1 toxicity profile
- MTD not exceeded or defined at up to 1200 mg Q2W
- Dose limiting toxicities:
 - Immune-mediated hepatitis (1200 mg primary dose escalation); resolved without sequelae
- Lipase increase with radiographic evidence of pancreatitis (600 mg HCC escalation); dose level subsequently cleared

#ASCO20 Slides are the property of the autho permission required for reuse.

Refractory to anti-PD-1 treatment

MGD013 Monotherapy Cohort Expansion: Safety

	No. (%) o	of Patients		Treatment	t-Relate	d AEs		AE	s Irresp	ectiv	e of Attri	ibution	
verall AE Totals	All Grades (N=205)	<u>></u> Grade 3 (N=205)	– Fatigue Rash* – Hypothyroidism	15.6%	8.3%								
AE (irrespective of causality)	178 (86.8)	86 (42.0)	Pyrexia –		7.3%								
Treatment-related AE	118 (57.6)	37 (18.0)ª	AST increased –		6.9%					_			
AE (irrespective of causality)	63 (30.7)	47 (22.9)	Nausea –		6.4%								
Treatment-related SAE	18 (8.8)	11 (5.4)	– Infusion related reaction – ALT increased		5.9% 5.9%								
AE leading to discontinuation	18 (8.8)	16 (7.8)	Lipase increased –		5.5%				_				
ESIs in \geq 2 Patients			Diarrhoea – Anaemia –		5.3% 5.0%								
Rash	17 (8.3)	6 (2.9)	Amylase increased –		5.0%								
Hypothyroidism	16 (7.8)	0 (0.0)	, Hyperthyroidism –		4.9%								
IRR or CRS	13 (6.3)	5 (2.4)	Arthralgia –		4.4	%							
Diarrhoea	11 (5.4)	1 (0.5)	Decreased appetite –		4.0)%							
Lipase increased	11 (5.4)	7 (3.4)	Pruritus** –		3.9	9%							
Hyperthyroidism	10 (4.9)	1 (0.5)	Lymphocyte count decreased –			5%							
Arthralgia	9 (4.4)	0 (0.0)	– Thrombocytopenia – Headache			2.5%			1				
Pneumonitis	4 (2.0)	1 (0.5)	Pneumonitis –			2.5% 2.5%					Grade 1		de 3
Myalgia	4 (2.0)	0 (0.0)	i neumonitis			2.3/0					Grade 2	Gra	de 4
Peripheral neuropathy	3 (1.5)	1 (0.5)		20 15	10	5	0	5	10	15	20	25	30
Hepatitis	3 (1.5)	2 (1.0)	Percentage of P	atients with	n Treatm	nent-l	Relate	d AEs a	and AEs	lrres	pective	of Attri	outior
Adrenal insufficiency	2 (1.0)	0 (0.0)											

* Includes MedDRA Preferred Terms of Rash and Maculopapular Rash. ** Includes MedDRA Preferred Terms of Pruritus and Generalized Pruritus. ^a Grade 4 drug-related AEs include: lipase increased (n=3), neutrophil count decreased, and IRR (n=1, each). No Grade 5 TRAEs have been reported. AESI = adverse events of special interest. Data cutoff: April, 25, 2020.

Overall

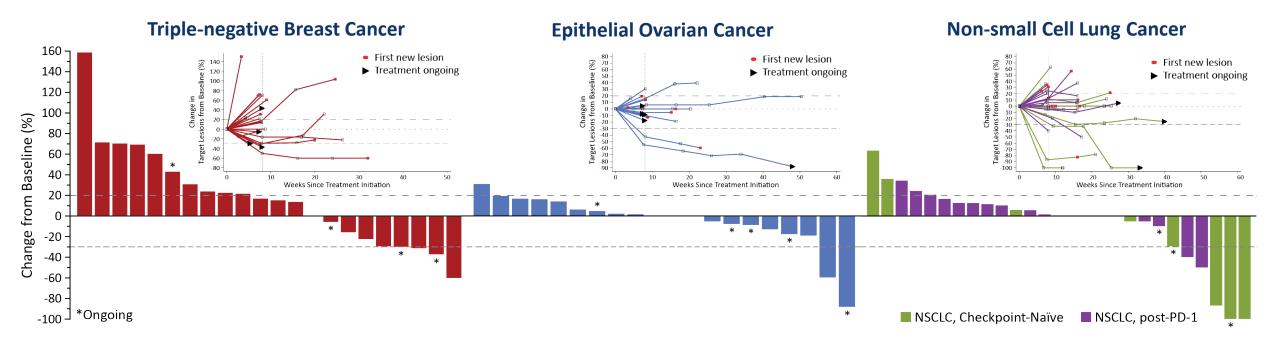
AE (irres

SAE (irre

AESIs ir

Treat AE leadi

#ASCO20 Slides are the property of the author, permission required for reuse.

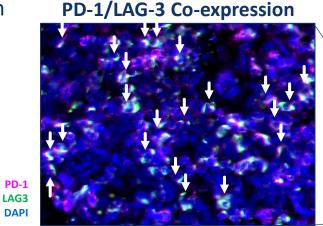

MGD013 Monotherapy Cohort Expansion: Activity

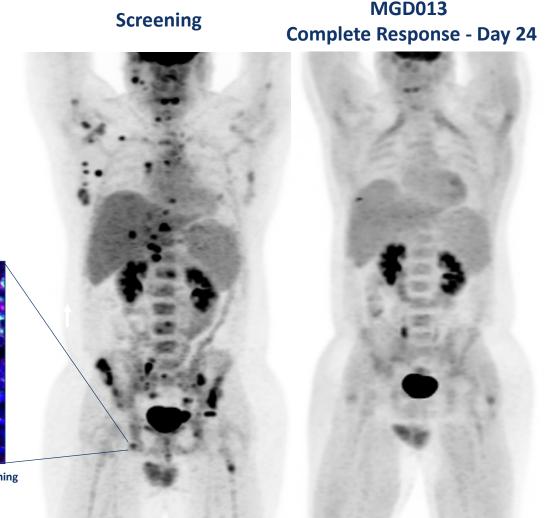
Anti-tumor activity observed in multiple tumor types

#ASCO20

Slides are the property of the author,

permission required for reuse

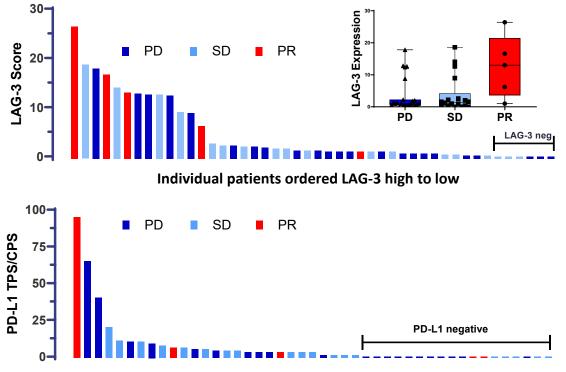

	TNBC	EOC	NSCLC, CPI-Naïve	NSCLC, post-PD-1
Evaluable Patients	23	23	14	15
ORR (Confirmed)	4.3% (1/23)	8.7% (2/23)	14.3% (2/14)	0% (0/15)
ORR (Confirmed + Unconfirmed)	17.4% (4/23)	8.7% (2/23)	21.4% (3/14)	13.3% (2/15)
SD	34.8% (8/23)	43.5% (10/23)	50.0% (7/14)	53.3% (8/15)
DCR	39.1% (9/23)	52.2% (12/23)	64.3% (9/14)	53.3% (8/15)
				Data cutoff: April, 25, 2020


Complete Response after Single MGD013 Administration

27-year-old male with DLBCL progressive disease after CAR-T cell therapy

- Relapsed subsequent to DA-R-EPOCH and JCAR017
- Pre-treatment biopsy: High levels of LAG-3 & PD-L1
- Received MGD013, 600 mg x 1
- Admitted on Day 11 for management of Grade 2 CRS
- CR on Day 24 (per Lugano classification)
- No evidence of CAR-T in circulation
- Allogeneic SCT performed
- Currently in remission:
 - 11 months post-MGD013
 - 9 months post-transplant

PD-1 (magenta) and LAG-3 (green) co-localized staining



#ASCO20 Slides are the property of the author permission required for reuse.

Objective Responses Associated with LAG-3 Expression

Inflammatory interferon-y signature elevated in patients with clinical response



Retrospective IHC Analyses

Individual patients ordered PD-L1 high to low

Archival biopsies from TNBC, EOC, and NSCLC expansion cohorts analyzed for LAG-3 (N=46) or PD-L1 (N = 45) by IHC. LAG-3 score was determined by calculating mean value of LAG-3+ cells per 40x field across 5 LAG-3+ hot spots (Chen et al., e15086 ASCO 2020). PD-L1 expression was determined per Agilent PD-L1 (22C3) pharmDx kit; TPS (NSCLC) was calculated as per interpretation manual and CPS (EOC, TNBC) calculated as follows: number of PD-L1 + cells (tumor and immune)/total number of viable tumor cells x 100. CPS <1 or TPS <1% was considered negative.

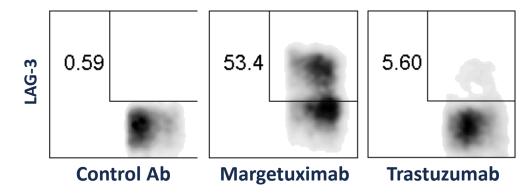
Transcript Profiling (Baseline Tumor Biopsy)

Objective responses associated with high baseline LAG-3/PD-1 expression and IFN- γ gene signature (CXCL9, CXCL10, CXC11, STAT1)

The NanoString PanCancer IO 360[™] assay was used to interrogate gene expression, including the abundance of 14 immune cell types and 32 immuno-oncology signatures from archival biopsies from EOC (N= 14) NSCLC (N= 25) and TNBC (N=13) expansion cohorts

#ASCO20 Slides are the property of the author, permission reauired for reuse.

Can Tumors Be Made More Responsive to PD-1 × LAG-3 Intervention?

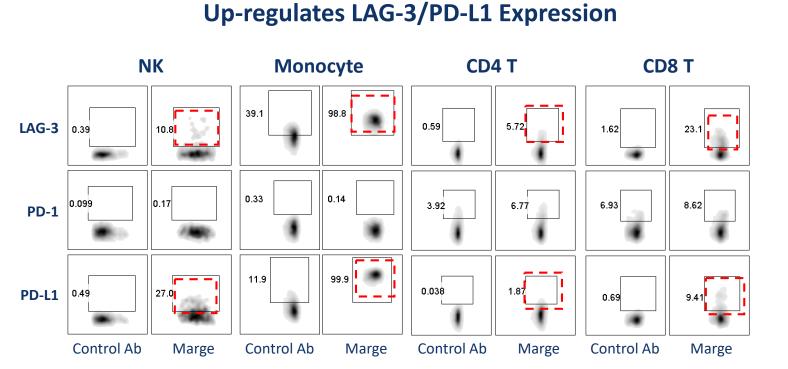

Enhancing effector-cell activation via Fc-engineered mAb

Margetuximab

Investigational Fc-engineered anti-HER2 mAb

- Same anti-HER2 properties as trastuzumab
- Enhanced Fc-mediated effector function^a
- Superior PFS to trastuzumab in clinical study
 - SOPHIA: Head-to-head Phase 3 study in mBC^b
- Anti-tumor activity in advanced gastric cancer
 - In combination with anti-PD-1^c

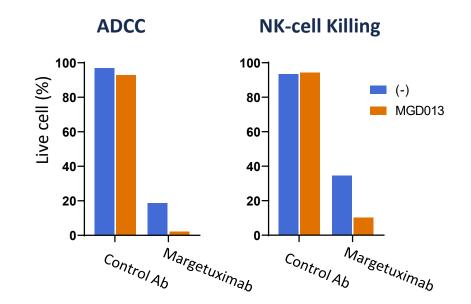
Margetuximab Enhances LAG-3 Expression by NK Cells


^a Nordstrom, et al., 2011 Breast Cancer Research, 13: R123
^b Rugo, et al., ASCO 2019, Chicago, IL
^c Catenacci, et al., ASCO GI 2019, San Francisco, CA | Catenacci et al. 2020 Lancet Oncology, in press

Human PBMC (Donor # 859) + N87 (HER2+) gastric cancer cells; E:T = 10:1; (IL-2, 20 U/mL) Control Ab 50ng/mL, margetuximab/trastuzumab, 5ng/mL;. FACS analyses (72h) on CD3⁻CD56⁺-gated NK cells

#ASCO20 Slides are the property of the author, permission required for reuse.

Fc-engineered mAb plus PD-1 x LAG-3 DART: Combinatorial Biology

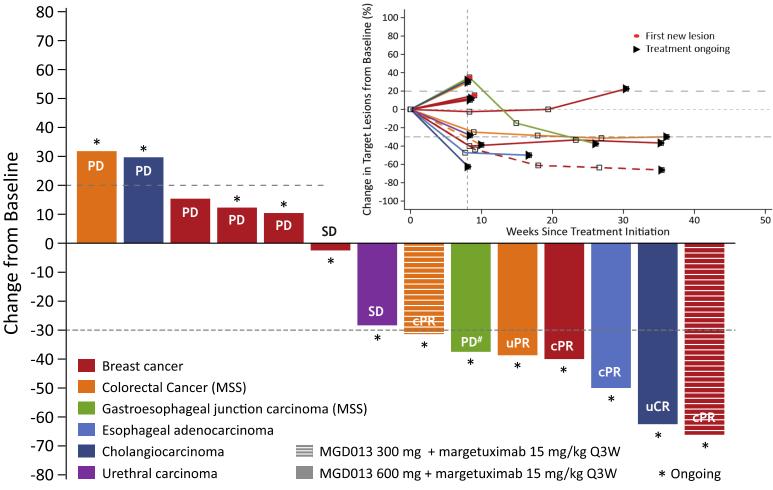


Fc-engineered Margetuximab

Upregulation of LAG-3 and PD-L1 on NK, monocytes and T cells

Human PBMC (Donor # 731) + N87 (HER2+) gastric cancer cells; E:T = 15:1 +/- margetuximab (no supplementary IL-2)

PD-1 x LAG-3 (MGD013) Enhances Lytic Activity of Immune Cells Primed by Fc-engineered mAb (Margetuximab)


ADCC (target: margetuximab opsonized N87, E:T=10) and NK-cell killing (target: K562, E:T=10) mediated by immune cells activated for 6 days by margetuximab +/- MGD013 in the presence of N87 tumor cells.

#ASCO20 Slides are the property of the author, permission required for reuse.

Fc-engineered αHER2 plus PD-1 × LAG-3 DART (Margetuximab plus MGD013)

Preliminary results in patients with relapsed/refractory HER2+ solid tumors

- ORR = 42.9% (6/14 evaluable pts)
 - Includes unconfirmed objective responses

• Well-tolerated

• Responding patients remain on therapy

Baseline PD-L1 & LAG-3 in # of Responding Patients (N = 6)

PD-L1 CPS:	< 1	1	TBD
Ν	4	1	1
LAG-3 Score:	< 5	5-15	TBD/NE

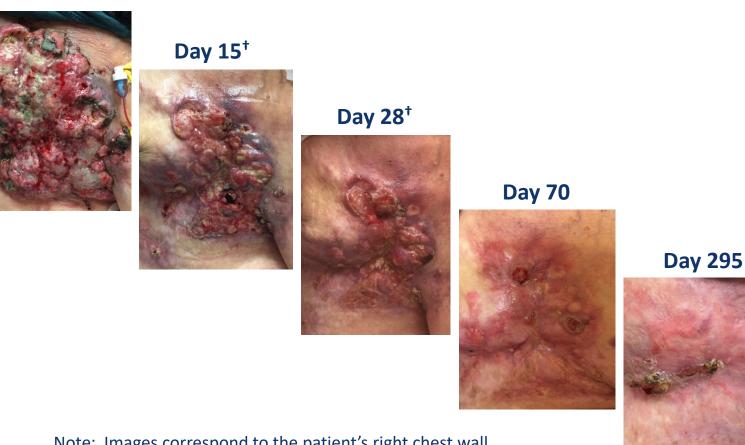
GEJ pt with apparent pseudo-progression (PD per RECIST), now with 37.5% reduction in target lesions (iPR per iRECIST).

#ASCO20

Slides are the property of the author, permission required for reuse.

Durable Response in Patient Receiving MGD013 *plus* Margetuximab

Resolution of chest wall disease with confirmed PR of overall tumor burden


Metastatic HER2+ breast cancer in **67-year-old female**

- Previously progressed on:
- 1L pertuzumab/trastuzumab/anastrozole
- 2L TDM1/anastrozole
- 31 TDM1

Baseline tumor burden:

- Right breast, liver and lymph nodes
- PD-L1 CPS: <1; LAG-3 score: 0.8
- Patient remains on treatment in Cycle 15 with improved clinical status and ongoing partial response
- 1st tumor assessment: -46%
- 2nd tumor assessment: -61%
- 3rd tumor assessment: -65%
- 4th tumor assessment: -66%

Baseline

Note: Images correspond to the patient's right chest wall **†** Day 15 and Day 28 images obtained after one dose of the combination

permission required for reuse

MGD013 (PD-1 × LAG-3 DART Molecule): Conclusions

First-in-class bispecific checkpoint inhibitor

- Designed to independently or coordinately block PD-1 and LAG-3
- Well tolerated at doses up to 1200 mg Q2W
- RP2D: 600 mg Q2W or Q3W
- Safety profile consistent with anti-PD-1 monotherapy

Encouraging monotherapy activity in multiple tumor types

- Baseline LAG-3 expression & IFN- γ signature associated with objective response

Compelling preliminary combinatorial activity with margetuximab (Fc-engineered mAb)

- >40% ORR observed in low PD-L1-expressing, relapsed/refractory HER2⁺ tumors
 - Compares favorably to low historical response rates to anti-HER2 ± CPI

Evaluation of MGD013 as monotherapy and in combination with Fc-engineered mAbs (incl. margetuximab) is ongoing

Investigators

<u>Australia</u>

Philip Clingan Anthony Joshua Girish Mallesara Andrew Weickhardt

Spain

Analia Azaro Pedrazzoli Javier Cortes Castan Maria Jose De Miguel Luken

Bulgaria

Nadezhda Miteva Krasimir Nikolov Krasimir Oreshkov

<u>Thailand</u>

Chaiyut Charoentum Arunee Dechapunkul Virote Sriuranpong

Poland

Monika Dlugosz-Danecka Iwona Lugowska Rodryg Ramlau Monika Tomaszewska-Kiecana Lucjan Wyrwicz

<u>Ukraine</u>

Igor Bondarenko Yevhen Hotko Anna Kryzhanivska Andriy Kurochkin Halyna Pylypenko Serhii Shevnia

United States of America

Charu Aggarwal Shakeela Bahadur George Blumenschein Bartosz Chmielowski Anthony El-Khoueiry Lipika Goyal Erika Hamilton Hedy Kindler Jason Luke Robin Norris Manish Patel Cesar Santa-Maria Susanna Ulahannan Jie Wang

#ASCO20 Slides are the property of the author, permission required for reuse.

Thank you to the patients and their families who participated or continue to participate in this study.

#ASCO20 Slides are the property of the author, permission required for reuse.

