# Biomarkers and Management of Cytokine Release Syndrome in AML Patients Treated with Flotetuzumab, a CD123 x CD3 Bispecific DART<sup>®</sup> Molecule for T-cell Redirected Therapy



<sup>1</sup>MacroGenics, Inc., Rockville, MD; <sup>2</sup>Servier, Paris, France; <sup>6</sup>H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL; <sup>7</sup>Washington University School of Medicine, Saint Louis, MO; <sup>4</sup>MacroGenics, Inc., Rockville, MD; <sup>5</sup>Institut Paoli Clamettes, Marseille, France; <sup>6</sup>H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL; <sup>7</sup>Washington University School of Medicine, Saint Louis, MO; <sup>4</sup>MacroGenics, Inc., Rockville, MD; <sup>5</sup>Institut Paoli Clamettes, Marseille, France; <sup>6</sup>H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL; <sup>7</sup>Washington University School of Medicine, Saint Louis, MO; <sup>4</sup>MacroGenics, Inc., Rockville, MD; <sup>5</sup>Institut Paoli Clamettes, Marseille, France; <sup>6</sup>H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL; <sup>7</sup>Washington University School of Medicine, Saint Louis, MO; <sup>4</sup>MacroGenics, Inc., Rockville, MD; <sup>5</sup>Institut Paoli Clamettes, Marseille, France; <sup>6</sup>H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL; <sup>7</sup>Washington University School of Medicine, Saint Louis, MO; <sup>4</sup>MacroGenics, Inc., Rockville, MD; <sup>5</sup>Institut Paoli Clamettes, Marseille, France; <sup>6</sup>H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL; <sup>7</sup>Washington University School of Medicine, Saint Louis, MO; <sup>4</sup>MacroGenics, Inc., Rockville, MD; <sup>5</sup>Institut Paoli Clamettes, Marseille, France; <sup>6</sup>H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL; <sup>4</sup>MacroGenics, Inc., Rockville, MD; <sup>5</sup>Institut Paoli Clamettes, Marseille, France; <sup>6</sup>H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL; <sup>4</sup>MacroGenics, Inc., Rockville, MD; <sup>5</sup>Institut Paoli Clamettes, Marseille, France; <sup>6</sup>H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL; <sup>4</sup>MacroGenics, Inc., Rockville, MD; <sup>5</sup>Institute, Tampa, FL; <sup>6</sup>Institute, Tampa, FL; <sup>4</sup>MacroGenics, Inc., Rockville, MD; <sup>5</sup>Institute, Tampa, FL; <sup>6</sup>Institute, Tampa, FL; <sup>4</sup>MacroGenics, Inc., Rockville, MD; <sup>5</sup>Institute, Tampa, FL; <sup>6</sup>Institute, Tampa, FL; <sup>5</sup>Institute, Tampa, FL; <sup>5</sup>Institute, Tampa, FL; <sup>5</sup>Institute, Tampa, FL; <sup>5</sup>Instit <sup>8</sup>University of Texas–MD Anderson Cancer Center, University, Atlanta, GA; <sup>12</sup>Washington University School of Medicine, Saint Louis, MO; <sup>13</sup>Universitätsklinikum Würzburg, Würzburg, Germany; <sup>14</sup>University Medical Center Groningen, Italy; <sup>15</sup>Institute, Milano, Italy; <sup>17</sup>IRCCS San Raffaele Scientific Institute, Milan, Italy; <sup>13</sup>University of Bologna, Italy; <sup>14</sup>University Medical Center Groningen, Reffaele Scientific Institute, Milano, Italy; <sup>14</sup>University of Bologna, Italy; <sup>14</sup>University of Bologna, Italy; <sup>14</sup>University Medical Center Groningen, Reffaele Scientific Institute, Milan, Italy; <sup>14</sup>University of Bologna, Italy; <sup>14</sup>University, Medical Center Groningen, Italy; <sup>14</sup>University, <sup>14</sup>Unive <sup>18</sup>Erasmus University Medical Center, Rotterdam, Netherlands

NCT02152956

## Background

- Flotetuzumab (MGD006/S80880): Novel CD123 x CD3 bispecific DART<sup>®</sup> protein being tested in a Phase 1/2 study in patients with relapsed/ refractory acute myeloid leukemia (AML)
- •As with all T-cell redirecting therapies, cytokine secretion is inherent in T-cell activation, with ensuing potential for cytokine release syndrome (CRS), an important side effect
- •We have previously reported that multi-step lead-in dosing of flotetuzumab mitigates CRS severity<sup>1</sup>
- CRS diagnosis and treatment is guided by the occurrence of non-specific clinical signs, such as fever, chills, hypotension and tachycardia; therefore, identification of predictors of CRS will be useful for optimal patient management
- •We report herein on potential biomarkers of CRS severity that may help guide CRS management

## Methods

#### **Dose and Dosing Schedules for Flotetuzumab** (28-day cycles): Recommended Phase 2 Dose

| Cycle 1 (Continuous Intravenous Infusion) |                |            | Cycle ≥2 (4 days on/3 days off per week) |  |     |        |     |       |        |  |  |
|-------------------------------------------|----------------|------------|------------------------------------------|--|-----|--------|-----|-------|--------|--|--|
| 30 100                                    | 500 ng/kg/     | day        | 500                                      |  | 500 |        | 500 |       | 500    |  |  |
|                                           | 1.1.1.1.1.1.1. | 1.1.1.1    |                                          |  |     |        |     | .   . |        |  |  |
| Day 1 Day 28                              |                | Day 28/Day | 8/Day 1 Cycle 2                          |  |     | Day 14 |     |       | Day 28 |  |  |

- Incidence and severity of CRS were analyzed for correlation with cytokine levels and changes in bone marrow blasts
- CRS graded according to Lee et al., 2014
- Relation between immune cells (T-cell subsets, monocytes) with tumor burden, percent CD123+ AML blasts, and CD123 expression were interrogated as potential determinants of CRS
- •Administration, dose, and frequency of IL-6 receptor antagonist tocilizumab were evaluated for their relationship with CRS severity, frequency, and cytokine levels

## Results

#### Demographics

| Characteristic                                                                                                                                                              | All Patients (n=31)   |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--|--|--|--|
| Age                                                                                                                                                                         |                       |  |  |  |  |
| Mean ± SD                                                                                                                                                                   | 59.9 ± 15.24          |  |  |  |  |
| Median (Range)                                                                                                                                                              | 64.0 (29.0, 82.0)     |  |  |  |  |
| Gender [n(%)]                                                                                                                                                               |                       |  |  |  |  |
| Female                                                                                                                                                                      | 15 (48.4)             |  |  |  |  |
| AML Sub-classification                                                                                                                                                      |                       |  |  |  |  |
| Relapse*                                                                                                                                                                    | 9 (29.0%)             |  |  |  |  |
| Failed 2 cycles of HMA                                                                                                                                                      | 3 (9.7)               |  |  |  |  |
| Refractory**                                                                                                                                                                | 19 (61.3%)            |  |  |  |  |
| AML Risk Stratification (ELN 2017)                                                                                                                                          |                       |  |  |  |  |
| Adverse                                                                                                                                                                     | 15 (48.4)             |  |  |  |  |
| Intermediate                                                                                                                                                                | 8 (25.8)              |  |  |  |  |
| Favorable                                                                                                                                                                   | 5 (16.1)              |  |  |  |  |
| Unknown                                                                                                                                                                     | 3 (9.7)               |  |  |  |  |
| # of Prior Lines of Therapy                                                                                                                                                 |                       |  |  |  |  |
| Mean ± SD                                                                                                                                                                   | 2.7 ± 1.90            |  |  |  |  |
| Median (Range)                                                                                                                                                              | 2.0 (1, 9)            |  |  |  |  |
| *Relapse includes progression after initial response to HMA.<br>**Refractory ≥2 induction attempts/CR with initial duration < 6 months/refract<br>Data cut-off Nov 1, 2018. | ory ≥4 cycles of HMA. |  |  |  |  |

•31 patients dosed; median age 64

 Most patients heavily pretreated with adverse cytogenetics (ELN 2017) and refractory to induction therapy; history of allogeneic stem cell transplant exclusionary

Presented at the 60th American Society of Hematology Annual Meeting, December 1–4, 2018, San Diego, CA

Kenneth Jacobs<sup>1</sup>, Cedric Viero<sup>2</sup>, John Godwin<sup>3</sup>, Jan Baughman<sup>4</sup>, Jichao Sun<sup>1</sup>, Kang Ying<sup>1</sup>, John Muth<sup>1</sup>, Shengyan Hong<sup>1</sup>, Norbert Vey<sup>5</sup>, Kendra L. Sweet<sup>6</sup>, Geoffrey L. Uy<sup>7</sup>, Farhad Ravandi<sup>8</sup>, Matthew C Foster<sup>9</sup>, David A. Rizzieri<sup>10</sup>, Martha L. Arellano<sup>11</sup>, Michael P. Rettig<sup>12</sup>, Max S. Topp<sup>13</sup>, Gerwin Huls<sup>14</sup>, Helene Lelièvre<sup>2</sup>, Stefania Paolini<sup>15</sup>, Fabio Ciceri<sup>16</sup>, Matteo Giovanni Carrabba<sup>17</sup>, Bob Löwenberg<sup>18</sup>, John F. DiPersio<sup>12</sup>, Jon Wigginton<sup>1</sup> and Jan K. Davidson-Moncada<sup>1</sup>



### **CRS Generally Limited to 1 Day**

- Median overall CRS duration: 1 day (range 1–26)
- •Median duration of CRS events with peak grade of 3: 3 days (range 2–3)



### **CRS Frequency Decreased with Time on Flotetuzumab**





 IL-6 levels showed the strongest relationship with CRS severity, as previously reported<sup>1</sup>.

#### **IL-6 Levels Did Not Correlate with Flotetuzumab Anti-leukemic Activity**



#### **Management of CRS Events**

#### Most CRS events were conservatively managed

•Aggressive early treatment with tocilizumab reduced CRS severity

|                                                                                                          | Grade 1    |               | Gra        | de 2          | Grade 3    |               |  |  |
|----------------------------------------------------------------------------------------------------------|------------|---------------|------------|---------------|------------|---------------|--|--|
| Treatment                                                                                                | #<br>Doses | #<br>Patients | #<br>Doses | #<br>Patients | #<br>Doses | #<br>Patients |  |  |
| Tocilizumab                                                                                              | 15         | 10            | 27         | 16            | 2          | 2             |  |  |
| Vasopressors                                                                                             | 0          | 0             | 3          | 2             | 0          | 0             |  |  |
| Steroids                                                                                                 | 3          | 3             | 10         | 5             | 0          | 0             |  |  |
| Oxygen                                                                                                   | 0          | 0             | 1          | 1             | 0          | 0             |  |  |
| Twenty-one patients (70%) received at least one dose of tocilizumab (median 1 dose/pt; range 1–5 doses). |            |               |            |               |            |               |  |  |

Two patients (26.7%) required steroid for CRS management (median 2 doses/pt; in Two patients (6.7%) received vasopressors (median 1.5 doses/pt; range 1–2). One patient (3.3%) received oxygen for management of CRS.

tp://ir.macrogenics.com/events.cfm

112615

## **Peak Levels of Circulating CD4 T Cells Correlate with CRS Severity**

CRS severity in days 1–8 (lead-in dose to max dose) in 40 patients treated at  $\geq$ 500 ng/kg/day showed a relationship with baseline frequency of circulating CD4<sup>+</sup> cells (Grade 0=6, Grade 1=11,  $\geq$  Grade 2=23), while CD8<sup>+</sup> cell frequency did not correlate with CRS severity



Disease burden, % AML blasts, CD123 receptor density in bone marrow or peripheral blood did not show a relationship with CRS severity • Other parameters tested such as monocyte levels and effector-totarget ratio in the peripheral blood did not correlate with CRS severity

(not shown)



relationship between # of CRS events and anti-leukemic activity

## Conclusions

- The frequency of CD4+ cells at baseline may be a potential biomarker for identifying patients at risk of more severe CRS
- Early use of tocilizumab can effectively modify the activity of IL-6, a significant contributor to CRS, and ameliorate CRS severity
- CRS severity is associated with increased IL-6 levels. There is no relationship between average peak IL-6 levels and anti-leukemic activity. Furthermore, no link could be found between CRS severity and decrease in BM blasts. Therefore, targeting CRS severity and IL-6 levels does not influence the activity of flotetuzumab
- Early identification of patients at greater CRS risk together with multistep dosing<sup>1</sup> and early use of tocilizumab can ameliorate CRS with no impact on flotetuzumab anti-leukemic activity
- Investigation of lead-in dose strategy ongoing

#### Reference

**1.** Jacobs *et al*. ASH 2017, abstract #3856.