

American Society of Hematology Helping hematologists conquer blood diseases worldwide

An Immune Senescence and Exhaustion-Related RNA Profile Predicts Clinical Outcomes in Acute Myeloid Leukemia

Jayakumar Vadakekolathu¹, Tung On Yau¹, Heidi Altmann², Sarah E. Church³, Hanna Knaus⁴, Mark D. Minden⁵, Jan Davidson-Moncada⁶, Sarah K. Tasian⁷, Martin Bornhäuser², Ivana Gojo⁸, Leo Luznik⁸, <u>Sergio Rutella^{1,9}</u>

¹John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK; ²Department of Internal Medicine I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; ³NanoString Technologies, Inc., Seattle, WA; ⁴Internal Medicine I, Medizinische Universität Wien, Austria; ⁵Princess Margaret Cancer Centre, Toronto, Canada; ⁶MacroGenics, Inc., Rockville, MD; ⁷Division of Oncology and Centre for Childhood Cancer Research, Children's Hospital of Philadelphia and University of Pennsylvania School of Medicine, PA; ⁸Department of Oncology, Johns Hopkins University, Baltimore, MD; ⁹Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, UK

- Chemotherapy refractoriness and disease relapse continue to be significant obstacles to therapeutic success in AML
- We have recently identified bone marrow (BM) IFN-γ-related transcriptional profiles that stratify patients with AML into an immuneinfiltrated and an immune-depleted subtype, and that refine the accuracy of survival prediction in response to conventional "3+7" chemotherapy beyond that afforded by cytogenetic and molecular prognosticators (Vadakekolathu J, *et al. Sci. Transl. Med.* 2020; 12: eaaz0463)
- CD8⁺ T cells in AML exhibit features of immune exhaustion and senescence (IES), including the upregulation of natural killer (NK) cellassociated transcripts, which persist only in chemotherapy nonresponders (Knaus HA, *et al. JCI Insight* 2018; 3: e120974)

- Senescent and exhausted T cells with defective effector functions for tumor immunity are induced by DNA damage, MAPK and STAT1/STAT3 signaling in the tumor microenvironment
- Senescent T cells highly express Tim-3, CD57 and NK receptors, including KLRG1, and remain metabolically active, producing high amounts of TNF-α, IFN-γ and suppressive cytokines (Liu X, et al. *J. Clin. Invest.* 2020; 130: 1073-83)
- Exhausted T cells are characterized by the progressive loss of T-cell function, express high levels of inhibitory receptors (PD1, CTLA4, TIM3, LAG3), co-stimulatory receptors, T cell factor 1 (TCF1) and GZMB, and have impaired cytokine production and replicative capacity (Ghorani E, et al. *Nat. Cancer* 2020; 1: 546-61. Akbar AN, et al, *Nat. Rev. Immunol.* 2011; 11: 289-95)

- Are senescence and exhaustion intertwined or unrelated molecular programs that compromise immunity?
- Subpopulations of TCF1⁺ precursor exhausted T cells serve as a predictive 'biomarker' for a favorable clinical outcome of checkpoint therapy in melanoma (Siddiqui I, *et al.* Immunity 2019; 50: 195-211)
 - Microenvironmental Immune Senescence and Exhaustion in Acute Myeloid Leukemia Associate with Response to Flotetuzumab, an Investigational CD123 × CD3 Bispecific DART Molecule (Vadakekolathu J, *et a*l. Poster #2878; December 7th, ASH 2020)
- The aim of the current study was to determine whether IES correlate with immune infiltration and with clinical outcomes in treatment-naïve AML

Patients and Methods

In silico cohorts Wet-laboratory cohorts PMCC* **TCGA** CHOP[^] SAL^{^^} Beat AML Master Trial Nr of patients 290 39 38 267 147 52 (18-81) 10 (0.1-20) Age (y) 52.5 (23-75) Adult Adult Onset Disease status Onset Onset Onset/CR/Relapse Onset

- The wet-laboratory AML cohorts used in this study included a total of 367 BM samples from children and adults with AML treated with curative intent. BMs were collected at time of diagnosis, complete remission (CR) and relapse (PMCC, SAL and CHOP series)
- BM RNAs were profiled on the nCounter platform using the PanCancer Immune Profiling Panel (NanoString Technologies, Seattle, WA)
- Immune signature scores and biological activity scores were calculated as pre-defined linear combinations (weighted averages) of biologically relevant gene sets (Vadakekolathu J, et al. Sci. Transl. Med. 2020)

*PMCC = Princess Margaret Cancer Centre, Toronto, Canada ^CHOP = Children's Hospital of Philadelphia, Philadelphia, PA ^^SAL = Studienallianz Leukämie, Dresden, Germany

Identification of an Immune Senescence and Exhaustion (IES) Gene Signature

Rutella S, et al. Unpublished (in collaboration with Johns Hopkins University).

7-gene signature

Prognostic Index estimated by β coefficients multiplied by gene expression values (Wagner S, et al. Blood Advances 2019)

Expanded, 68-gene IES signature

Prognostic Index estimated by β coefficients multiplied by gene expression values (Wagner S, et al. Blood Advances 2019)

IES Gene Signature

Senescence genes	Exhaustion genes				
ABCB1	EOMES		Inhibitory rece	ptors	
CCL4	GZMB		CD48		
DOCK9		I/NK-cell tra	TICKING CTLA4		
DPP4	SI AME6	CXCR3			
ETS1		CXCR6	Costimulatory	receptors	
GZMA			CD27		
GZMK	Cytokines, chemokines ar	d their receptors	CD28		
GZMM	CCL5		SLAMF1		
IFNG	CCR5		TNFSF14 (CD2	258)	
KLRB1	CCR7	Immune checkpo	pints		
KLRC1	CCR9	SLAMF3			
KLRD1	FLT3LG				
KLRG1	IL12RB2		Surface molecules	Unclassifiable	
KLRK1	IL18R1	TCR signaling	CD40L	F2RL1	
LTB	IL18RAP	CD247	HLA-DOB	FYN	
PRF1	IL2RB	CD3E		IGF2R	
SH2D1A	IL6ST	CD3G			
TNFSF8 (CD153)	IL7R	ITK			
		LCK			
	Trene evintien festere	CD3D			
I-cell genes		ZAP70	Type I/II IFN response	Metabolic reprogramming	
	GAIA3		IL10RA	TLR1	
CD5	SIAI4		IFIH1		
CD6	IBX21		ISG20		
CD7					
CD8A					
CD8B	³ Manually annotated (Knaus HA, et al. JCI Insight 2018; Kallies A, et al. Nat. Rev. Immunol. 2020;				

SeneQuest Portal, Gene-to-Senescence Associations)

- Axon guidance mediated by semaphorins (P00007)
- Alzheimer disease-presenilin pathway (P00004)
 - Angiogenesis (P00005)

- Apoptosis signaling pathway (P00006)
- Parkinson disease (P00049)
- Ras Pathway (P04393)
- T cell activation (P00053)
- Toll receptor signaling pathway (P00054)
- VEGF signaling pathway (P00056)
- Wht signaling pathway (P00057)
- Cadherin signaling pathway (P00012)
- EGF receptor signaling pathway (P00018)
- Gonadotropin-releasing hormone receptor pathway (P06664)
- Integrin signalling pathway (P00034)
- Interferon-gamma signaling pathway (P00035)
- Interleukin signaling pathway (P00036)
- JAK/STAT signaling pathway (P00038)
- PDGF signaling pathway (P00047)
- Inflammation mediated by chemokine and cytokine signaling pathway (P00031)
- Insulin/IGF pathway-mitogen activated protein kinase kinase/MAP kinase cascade (
- Insulin/IGF pathway-protein kinase B signaling cascade (P00033)

- Oytokine-cytokine receptor interaction
- T cell receptor signaling pathway

The IES Score Correlates with Immune Infiltration and with AML Prognosis

Contraction of the second seco

TP53 Abnormalities Correlate with Immune Infiltration and Associate with response to Flotetuzumab Immunotherapy in Acute Myeloid Leukemia (Lai C, *et a*l. Poster #2001; December 6th, ASH 2020)

Validation Series Beat AML Master Trial

A. Beat AML P (MW) < 0.0001 P(MW) < 0.0001 100 100-75-75-BM blasts (%) PB blasts (%) **A** 000 000 000 0 50-**50** <mark>8</mark> 25 25-IES^{high} IESIOW **IES^{high}** IESlow 8 8 P (MW) = 0.0121 P(MW) = 0.0066 6 **IES** score **IES** score 4-4 2-2-0-0 **TP53 TP53** RUNX1 RUNX1 WT Mutated **Mutated** WT n=17 n=86 n=23 n=29

The IES Score Correlates with Immune Infiltration PMCC Cohort

ELN Adverse Risk

The above findings were validated in independent wet-lab cohorts comprising adults (PMCC series; n=290; SAL series; n=46) and children (CHOP series; n=46) with AML. In the ELN adverse risk subgroup (PMCC cohort), both relapse-free survival (RFS) and OS were significantly shorter in patients with higher than median compared with lower than median IES scores (median RFS time of 6.93 *versus* not reached [log-rank *P*=0.0053], and median OS of 10.5 months *versus* 18 months [log-rank *P*=0.0011], respectively). In contrast, the IES signature score failed to stratify survival in patients with ELN favorable and intermediate risk.

The IES Score Correlates with Immune Infiltration SAL Cohort

Α

The IES Score Increases in Remissional BM Samples

Finally, a pairwise comparison of matched diagnostic, CR and relapse BM samples (SAL series; n=22 patients and CHOP series; n=40 patients) showed significantly higher IES signature scores at time of CR, congruent with chemotherapy-induced acceleration of IES, and at time of post-chemotherapy relapse compared with disease onset (**Fig. 1F**). Notably, *CD8A*, *TBX21*, a Th1 transcription factor, and markers of NK cells and cytotoxic T lymphocytes, including *KLRK1*, *KLRD1*, *KLRC2*, *GNLY*, and granzymes, were among the top ranked immune genes associated with AML relapse (**Fig. 1G**).

- Patients with immune-infiltrated AML exhibit features of IES, which correlate with adverse-risk molecular lesions (*TP53* and *RUNX1* mutational status), and with chemotherapy refractoriness and shorter survival
- Molecular circuits reflective of IES might also underpin AML relapse
 after conventional induction chemotherapy
- IES T cells could be functionally rejuvenated by novel immunotherapies being investigated in AML
 - Microenvironmental Immune Senescence and Exhaustion in Acute Myeloid Leukemia Associate with Response to Flotetuzumab, an Investigational CD123 × CD3 Bispecific DART Molecule (Vadakekolathu J, *et a*l. Poster #2878; December 7th, ASH 2020)

Acknowledgements

Co-authors and Collaborators

Funding Sources

Nottingham Trent University

Stephen Reeder Payton Tau Jayakumar Vadakekolathu

PhD Students Jenny Ashforth Melissa Courtney

The Princess Margaret Hospital Foundation University Health Network Mark D. Minden Toronto, Canada

Tasleema Patel Sarah K. Tasian Philadelphia, PA

Ivana Gojo Leo Luznik Sidney Kimmel Comprehensive Cancer Centre Baltimore, MD

Heidi Altmann Martin Bornhäuser Jörn Meinel Marc Schmitz SAL Studienallianz Leukämie Dresden, Germany <u>NANOSTRING</u>

Joseph M. Beechem Alessandra Cesano

Michael Bailey James Gowen-MacDonald Thomas Smith

Sarah E. Church Tressa Hood Sarah E. Warren Seattle, WA National Priorities Research Programme, 2016-2020

NTU

Nottingham Trent University

الصندوف القطري لرماية البحت الماهي

Alth Qatar National Research Fund

Member of Qatar Foundation

HIGHER EDUCATION FUNDING COUNCIL FOR ENGLAND Mainstream QR funding, 2017-2019

John and Lucille van Geest Foundation

American Society *of* Hematology

Please email your questions to sergio.rutella@ntu.ac.uk

ann

MACROGENICS

Patrick Kaminker Jan K. Davidson-Moncada John Muth Rockville, MD

Shared genes associated with survival

Beat AML (r	anked by χ^2)
ENO2	20.070838252656436
MCOLN2	14.803805819848602
RASA3	14.003750260434753
ETS1	14.003750260434753
SH3BP5	12.470310438224876
KCNA3	12.470310438224876
NCKAP1	10.336828946454615
STAT4	10.336828946454615
KLF12	10.336828946454615
SESN3	9.670115980276409
BACH2	9.025626779637474
DLG3	8.403361344537815
FYN	8.403361344537815
CD72	8.403361344537815
SLC9A9	7.803319674977429
INPP4B	7.225501770956317
LRIG1	7.225501770956317
WLS	6.6699076324744775
PTCH1	6.6699076324744775
TIAM1	6.6699076324744775
ISG20	6.6699076324744775
C1orf21	6.6699076324744775
GBP1	6.136537259531912
ARNTL	6.136537259531912
ARL4C	6.136537259531912
SYNE1	5.625390652128621
IL12RB2	5.625390652128621
TGFBR3	5.136467810264602
KLRD1	5.136467810264602
DOCK9	5.136467810264602

TCGA (ranked by χ^2)

HOPX	6.05901447115447		
MCOLN2	6.05901447115447		
HS3ST3B1	5.439109698189653		
KLRG1	4.155618137008221		
USP18	4.155618137008221		
MDFIC	3.1266217951199358		
CD7	3.0854720706073646		
DTX1	3.0854720706073646		
EVL	2.610034484315928		
CXCR3	2.610034484315928		
HLA-DOB	2.610034484315928		
RASA3	2.610034484315928		
SH3BP5	2.610034484315928		
ST8SIA1	2.208919631221047		
LAX1	2.174353862630487		
TRAT1	1.809703996180595		
ABLIM1	1.7784302055510408		
ARL4C	1.7784302055510408		
GZMB	1.7784302055510408		
GBP1	1.7784302055510408		
LTB	1.7784302055510408		
IGF2R	1.7784302055510408		
TNFSF14	1.7784302055510408		
CCR9	1.4222635130775894		
CHN1	1.4222635130775894		
CCL5	1.4222635130775894		
IL18RAP	1.4222635130775894		
ISG20	1.4222635130775894		
KCNA3	1.4222635130775894		
NCALD	1.4222635130775894		

KCNA3

Shared genes associated with survival – pathway analysis

Network interaction analysis

Reactome Pathways		
Pathway description	count in gene set	FDR
<u>HSA-913531</u>		
Interferon signaling	18 of 189	6.17e-28
<u>HSA-909733</u>		
Interferon alpha/beta signaling	12 of 66	6.11e-21
<u>HSA-1169410</u>		
Antiviral mechanism by IFN-stimulated genes	s 11 of 77	2.73e-18
HSA-1169408	0. (00	4 50 44
ISG15 antiviral mechanism	9 of 69	1.56e-14
HSA-108256	20 of 1025	6 65a 14
	20 01 1925	0.000-14
Interferon gamma signaling	6 of 86	1 010-08
interieron gamma signaling	0 01 00	4.010-00
Molecular Function (GO)		
GO-term description	count in gene set	FDR
<u>GO:0005261</u>	-	
Cation channel activity	6 of 316	0.00093
<u>GO:0005249</u>		
Voltage-gated potassium channel activity	4 of 95	0.0011
<u>GO:0046873</u>		
Metal ion transmembrane transporter activity	6 of 458	0.0016
<u>GO:0022839</u>		
Ion gated channel activity	5 of 329	0.0018
<u>GO:0003725</u>		
Double-stranded RNA binding	3 of 70	0.0023