SOPHIA Primary PFS Analysis: A Phase 3 Study of Margetuximab + Chemotherapy vs Trastuzumab + Chemotherapy in Patients With HER2+ Metastatic Breast Cancer After Prior Anti-HER2 Therapies

Hope S. Rugo, MD,¹ Seock-Ah Im, MD, PhD,² Gail S. Wright, MD, FACP, FCCP,³ Santiago Escrivá-de-Romaní, MD,⁴ Michelino De Laurentiis, MD, PhD,⁵ Javier Cortes, MD, PhD,⁶ Shakeela W. Bahadur, MD,⁷ Barbara B. Haley, MD,⁸ Raul H. Oyola, MD,⁹ David A. Riseberg, MD,¹⁰
Antonino Musolino, MD, PhD, MSc,¹¹ Fatima Cardoso, MD,¹² Giuseppe Curigliano, MD, PhD,¹³ Peter A. Kaufman, MD,¹⁴ Mark D. Pegram, MD,¹⁵
Sutton Edlich,¹⁶ Shengyan Hong, PhD,¹⁶ Edwin Rock, MD, PhD,¹⁶ William J. Gradishar, MD,¹⁷ on behalf of the SOPHIA Study Group

¹University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA; ²Seoul National University Hospital Cancer Research Institute, Seoul, Korea; ³Florida Cancer Specialists & Research Institute, New Port Richey, FL, USA; ⁴Vall d'Hebron Institute of Oncology, Barcelona, Spain; ⁵National Cancer Institute Fondazione Pascale, Naples, Italy; ⁶IOB Institute of Oncology, Madrid & Barcelona; Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; ⁷Bannerer MD Anderson Cancer Center, Gilbert, AZ, USA; ⁸University of Texas Southwestern Medical Center, Dallas, TX, USA; ⁹Northwest Georgia Oncology Centers, Marietta Cancer Center, Marietta, GA, USA; ¹⁰Mercy Medical Center, Baltimore, MD, USA; ¹¹University Hospital of Parma, Parma, Italy; ¹²Champalimaud Clinical Center/Champalimaud Foundation, Lisbon, Portugal; ¹³University of Milano, European Institute of Oncology, Milan, Italy; ¹⁴University of Vermont Cancer Center, Division of Hematology/Oncology, Burlington, VT, USA; ¹⁵Stanford Women's Cancer Center, Palo Alto, CA, USA; ¹⁶MacroGenics, Inc., Rockville, MD, USA; ¹⁷Northwestern University, Chicago, IL, USA

Abstract #1000 PRESENTED AT:

#ASCO19 Slides are the property of the ad permission required for reuse.

Persistent Unmet Need in HER2+ MBC After Anti-HER2 Therapy

- Current standard of care for HER2-positive MBC
 - First-line: trastuzumab and pertuzumab with chemotherapy¹⁻³
 - Second-line: T-DM1^{4,5}
- After the above therapies, there is no recognized standard of care
 - Subsequent therapies are poorly defined, including sequential chemotherapy with trastuzumab and/or lapatinib^{6,7}
 - Continued anti-HER2 therapy after progression is generally preferred, in combination with chemotherapy⁸⁻¹¹

^{1.} Baselga J, et al. *N Engl J Med.* 2012;366(2):109-119. 2. Swain SM, et al. *Lancet Oncol.* 2013;14(6):461-471. 3. Swain SM, et al. *N Engl J Med.* 2015;372(8):724-734. 4. Verma S, et al. *N Engl J Med.* 2012;367(19):1783-1791. 5. Diéras V, et al. *Lancet Oncol.* 2017;18(6):732-742. 6. Giordano SH, et al. *J Clin Oncol.* 2018;36(26):2736-2740. 7. Cardoso F, et al. *Ann Oncol.* 2018;29(8):1634-1657. 8. von Minckwitz G, et al. *J Clin Oncol.* 2009;27(12):1999-2006. 9. von Minckwitz G, et al. *Eur J Cancer.* 2011;47(15):2273-2281. 10. Geyer CE, et al. *N Engl J Med.* 2006;355(26):2733-2743. 11. Cameron D, et al. *Oncologist.* 2010;15(9):924-934.

• the property of the author, on required for reuse.

HER2=human epidermal growth factor receptor 2; MBC=metastatic breast cancer; T-DM1=ado-trastuzumab emtansine.

Margetuximab: Fc-engineered to Activate Immune Responses

Trastuzumab

Fab:

- Binds HER2 with high specificity
- Disrupts signaling that drives cell proliferation and survival

Fc:

- Wild-type immunoglobulin G1 (IgG1) immune effector domains
- Binds and activates immune cells

Margetuximab^{1,2}

Fab:

- Same specificity and affinity
- Similarly disrupts signaling

Fc engineering:

- ↑ Affinity for activating FcγRIIIA (CD16A)
- \downarrow Affinity for inhibitory Fc γ RIIB (**CD32B**)

Margetuximab Binding to FcyR Variants:

Receptor Type	Receptor	Allelic Variant	Relative Fc Binding	Affinity Fold-Change
Activating	CD16A	158F	Lower	6.6x 个
	CDIOA	158V	Higher	4.7x 个
	CD32A	131R	Lower	6.1x 🗸
		131H	Higher	\leftrightarrow
Inhibitory	CD32B	232I/T	Equivalent	8.4x ↓

1. Nordstrom JL, et al. Breast Cancer Res. 2011;13(6):R123. 2. Stavenhagen JB, et al. Cancer Res. 2007;67(18):8882-8890.

#ASCO19 Slides are the property of the author permission required for reuse.

CD16A Genotype May Predict Anti-HER2 Antibody Benefit

- Two retrospective studies of HER2+ MBC¹ and early breast cancer² suggest patients with lower affinity CD16A-158F allele have lower PFS and ORR with trastuzumab than those homozygous for higher affinity CD16A-158VV
 - Two other retrospective studies showed no association between FcγR genotypes and outcome with adjuvant trastuzumab in early breast cancer^{3,4}
- Hypothesis: Greater margetuximab benefit in lower binding CD16A-158F carriers
 Increased affinity of margetuximab for CD16A-158F over trastuzumab (wild-type IgG1)
- SOPHIA is first prospective* analysis of FcyR genotype impact on anti-HER2 antibody efficacy

*Non-alpha allocating, exploratory analysis.1. Musolino A, et al. J Clin Oncol. 2008;26(11):1789-1796.2. Gavin PG, et al. JAMA Oncol. 2017;3(3):335-341.ORR=objective response rate; PFS=progression-free survival.3. Hurvitz SA, et al. Clin Cancer Res. 2012;18(12):3478-3486.4. Norton N, et al. Cancer Immunol Res. 2014;2(10):962-969.

Slides are the property of the permission required for reus

Margetuximab Enhances Innate Immunity In Vitro

Greater relative cytotoxicity of margetuximab with NK cells from CD16A-158F allele carriers

Preclinical Assay of Antibody-Dependent Cellular Cytotoxicity (ADCC)¹

Effector Cells: Human NK cells from donors with CD16A genotypes 158VV, 158FV, and 158FF **Target Cells**: JIMT-1 HER2+ breast cancer cell line resistant to trastuzumab antiproliferative activity **Cellular Assay**: 3:1 Effector:Target ratio; 24-hour incubation time; endpoint: % lactate dehydrogenase release

mAb=monoclonal antibody; NK=natural killer.

#ASCO19 Slides are the property of the author permission required for reuse.

Margetuximab Enhances HER2-specific Adaptive Immunity^{1,2}

- Phase 1 margetuximab monotherapy study in 66 pretreated patients with HER2+ carcinomas^{3,4}:
 - Four (17%) confirmed responses in 24 evaluable patients with HER2+ MBC³
 - Three patients continue on margetuximab at least 4 to 6 years, as of 15-May-2019⁴
- Enhanced HER2-specific T- and B-cell responses after margetuximab monotherapy⁵

1. Nordstrom JL, et al. *Breast Cancer Res*. 2011;13(6):R123. 2. Stavenhagen JB, et al. *Cancer Res*. 2007;67(18):8882-8890. 3. Bang YJ, et al. *Ann Oncol*. 2017;28(4):855-861. 4. Im SA, et al. *Cancer Res*. 2019;79(suppl 4): Abstract P6-18-11. 5. Nordstrom JL, et al. ASCO 2019 Poster (Abstr. #1030).

ANNUAL MEETING

#ASCO19 Slides are the property of the author,

permission required for reuse

Study CP-MGAH22-04 (SOPHIA) Design^{1,2}

HR=hazard ratio; CBA=central blinded analysis.

1. Rugo HS, et al. J Clin Oncol. 2016;34(suppl 15):TPS630. 2. Clinicaltrials.gov. NCT02492711. www.clinicaltrials.gov/ct2/show/NCT02492711. Accessed April 8, 2019.

Abstract #1000 2019 AS PRESENTED AT:

#ASCO19 ides are the property of the author, ANNUAL MEETING permission required for reuse

ITT Population: Baseline Characteristics

		Margetuximab +	Trastuzumab +
		Chemotherapy (n=266)	Chemotherapy (n=270)
	Median age	55	56
	Female sex	266 (100%)	267 (98.9%)
Demographics	Europe	152 (57%)	138 (51%)
	North America	85 (32%)	102 (38%)
	Other region	29 (11%)	30 (11%)
	ECOG PS 0	149 (56%)	161 (60%)
	ECOG PS 1	117 (44%)	109 (40%)
	Metastatic	260 (98%)	264 (98%)
	Locally advanced, unresectable	6 (2%)	6 (2%)
Disease Characteristics	Measurable disease by CBA	262 (99%)	262 (97%)
	≤2 metastatic sites	138 (52%)	144 (53%)
	>2 metastatic sites	128 (48%)	126 (47%)
	Hormone receptor positive	164 (62%)	170 (63%)
	Hormone receptor negative	102 (38%)	98 (36%)
	Capecitabine	71 (27%)	72 (27%)
Backhona chamatharany	Eribulin	66 (25%)	70 (26%)
backbone chemotherapy	Gemcitabine	33 (12%)	33 (12%)
	Vinorelbine	96 (36%)	95 (35%)

Treatment arms overall balanced

ITT population (all randomized patients): N=536.

ECOG=Eastern Cooperative Oncology Group; hormone receptor positive=ER+ and/or PgR+; hormone receptor negative=ER- and PgR-; ITT=intention to treat; PS=performance status.

Abstract #1000 PRESENTED AT: 2019

2019 ASCO ANNUAL MEETING 31 des are the property of the author, permission required for reuse.

ITT Population: Prior Cancer Therapy

	Margetuximab + Chemotherapy (n=266)	Trastuzumab + Chemotherapy (n=270)
Settings of prior therapy		
Adjuvant and/or neoadjuvant	158 (59%)	145 (54%)
Metastatic only	108 (41%)	125 (46%)
Prior metastatic lines of therapy		
≤2	175 (66%)	180 (67%)
>2	91 (34%)	90 (33%)
Prior anti-HER2 therapy		
Trastuzumab	266 (100%)	270 (100%)
Pertuzumab	266 (100%)	269 (100%)
T-DM1	242 (91%)	247 (92%)
Lapatinib	41 (15%)	39 (14%)
Other HER2	6 (2%)	6 (2%)
Prior chemotherapy		
Taxane	252 (95%)	249 (92%)
Anthracycline	118 (44%)	110 (41%)
Platinum	34 (13%)	40 (15%)
Prior endocrine therapy	126 (47%)	133 (49%)
	Treatment arms	overall balanced

ITT population: N=536.

Abstract #1000 PRESENTED AT: 2019 ASCO ANNUAL MEETING Stides are the property of the author, permission required for reuse.

PFS Analysis in ITT Population

Margetuximab Trastuzumab Margetuximab Trastuzumab 100 100 + Chemotherapy + Chemotherapy + Chemotherapy + Chemotherapy (n=266) (n=270) (n=266) (n=270) 80 80 # of events 160 177 # of events 130 135 Progression-free Survival (%) Progression-free Survival (%) Median PFS 5.6 months Median PFS 4.9 months 4.2 months 5.8 months (95% CI) (5.06 - 6.67)(3.98 - 5.39)(95% CI) (5.52 - 6.97)(4.17 - 5.59)60 60 HR by stratified Cox model, 0.70 HR by stratified Cox model, 0.76 (95% CI, 0.56–0.87) (95% CI, 0.59–0.98) 40 40 Stratified log-rank P=0.033 Stratified log-rank P=0.001 20 20 Margetuximab + chemotherapy Margetuximab + chemotherapy Trastuzumab + chemotherapy Trastuzumab + chemotherapy 0 0 10 15 20 25 25 5 20 0 5 10 15 Time from Randomization (Months) Time from Randomization (Months) 266 206 155 112 72 61 33 32 Margetuximab 16 13 8 Margetuximab 266 174 94 21 0 45 6 270 184 130 87 59 45 25 21 5 0 Trastuzumab 10 Trastuzumab 270 158 74 33 13 2 2

24% Risk Reduction of Disease Progression Central Blinded Analysis (Primary Endpoint)

30% Risk Reduction of Disease Progression Investigator Assessed (Secondary Endpoint)

• PFS analysis was triggered by last randomization on October 10, 2018, after 265 PFS events occurred

ITT population: N=536. CI=confidence interval.

#ASCO19 Slides are the property of the author, permission required for reuse.

PFS Subgroup Analyses

	Median PFS (95% CI), Months		HR by		Unstratified
	Margetuximab + Chemotherapy	Trastuzumab + Chemotherapy		Unstratified Cox Model	95% CI	Log-Rank <i>P</i> Value
All patients, n=536	5.8 (5.52–6.97)	4.9 (4.17–5.59)	⊢ ●(0.78	(0.61–0.99)	0.044
Capecitabine, n=143	8.3 (5.55–11.50)	5.5 (4.17–8.28)	⊢ 1	0.77	(0.47–1.26)	0.302
Eribulin, n=136	6.0 (3.81–8.05)	4.2 (3.38–5.55)	⊢ −●−−− <u>+</u> 1	0.66	(0.42–1.05)	0.080
Gemcitabine, n=66	5.4 (4.07–11.01)	3.5 (1.45–7.16)	⊢	0.58	(0.29–1.18)	0.128
Vinorelbine, n=191	5.6 (4.24–6.97)	5.1 (3.42–6.67)	⊢	0.90	(0.60–1.35)	0.606
>2 metastatic sites, n=254	6.3 (5.42, 8.08)	4.2 (3.38, 5.55)	⊢ −●−−−1	0.63	(0.44–0.89)	0.009
≤2 metastatic sites, n=282	5.7 (4.47, 6.97)	5.5 (4.24, 5.85)	⊢	0.94	(0.67–1.31)	0.702
Hormone Receptor-, n=200	5.8 (4.80, 7.23)	4.2 (2.83, 5.55)	F	0.58	(0.39–0.86)	0.007
Hormone Receptor+, n=334	5.7 (5.52, 8.18)	5.5 (4.24, 7.03)	⊢	0.88	(0.64–1.19)	0.393
HER2 IHC 3+, n=291	6.9 (5.55 <i>,</i> 8.31)	5.6 (3.98 <i>,</i> 5.85)	F	0.64	(0.46–0.90)	0.011
HER2 ISH amplified, n=245	5.5 (4.01, 6.60)	4.6 (4.07, 5.55)	⊢	1.01	(0.71–1.42)	0.972
Age >60 years, n=170	6.9 (5.52, 10.51)	5.6 (4.14, 5.85)	⊢ I	0.58	(0.36–0.92)	0.020
Age ≤60 years, n=366	5.6 (4.24, 6.97)	4.6 (4.01, 5.59)	⊢ −● −1	0.87	(0.66–1.16)	0.337
Prior (neo)adjuvant Tx: yes, n=303	6.3 (5.55–8.05)	5.4 (4.01–5.59)	⊢ −●−−−1	0.67	(0.48–0.93)	0.014
Prior (neo)adjuvant Tx: no, n=233	5.6 (3.71–6.97)	4.9 (4.07–7.16)	F	0.99	(0.68–1.42)	0.935
			0.0 0.5 1.0 1.5 2.	0		
			Margetuximab Better Trastuzumab Bette	er		

Hormone receptor positive=ER+ and/or PgR+; hormone receptor negative=ER- and PgR-; IHC=immunohistochemistry; ISH=in situ hybridization; Tx=treatment.

Abstract #1000 PRESENTED AT: 2019 A

2019 ASCO ANNUAL MEETING #ASCO19 Stides are the property of the author, permission required for reuse.

Planned^{*} Exploratory PFS Analyses by FcγR Genotypes (CBA)

Margetuximab benefit appears to be increased in low-affinity CD16A-158F allele carriers

		Median PFS (95% CI), Months			HR by		Unstratified
		Margetuximab + Chemotherapy	Trastuzumab + Chemotherapy		Unstratified Cox Model	95% CI	Log-Rank <i>P</i> Value
	All patients	5.8 (5.52–6.97)	4.9 (4.17–5.59)	F ● -I	0.78	(0.61–0.99)	0.044
(CD16A/F carrier (FV or FF), n=437	6.9 (5.55–8.15)	5.1 (4.14–5.59)	⊢● -1	0.68	(0.52–0.90)	0.005
	CD16A/FF, n=192	8.2 (5.52–10.51)	5.6 (4.50–8.31)	⊢● −i	0.69	(0.46–1.05)	0.080
	CD16A/FV, n=245	6.3 (5.52–7.23)	4.3 (4.01–5.59)	⊢ ●	0.71	(0.50–1.01)	0.055
Activating	CD16A/VV, n=69	4.8 (2.46–5.65)	5.6 (2.86–11.04)	↓	1.78	(0.87–3.62)	0.110
	CD32A/RR, n=122	5.7 (4.80–10.55)	5.5 (2.76–8.21)		0.69	(0.41–1.17)	0.166
	CD32A/RH, n=247	6.9 (5.55–8.15)	5.6 (4.17–6.67)	⊢ ● -i	0.74	(0.52–1.06)	0.102
	CD32A/HH, n=137	5.6 (3.29–8.28)	4.1 (2.79–5.59)	⊢ ● I	0.80	(0.49–1.30)	0.365
Inhibitory	CD32B/II ⁺ , n=380	5.8 (5.55–7.66)	5.5 (4.17–5.65)	⊢ ● H	0.85	(0.64–1.13)	0.265
function	CD32B/IT ⁺ , n=117	6.0 (4.14–NA)	5.5 (2.79–7.16)	. ⊢● H	0.63	(0.36–1.10)	0.098
				0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0			

Margetuximab Better Trastuzumab Better

*Non-alpha allocating, exploratory analysis.

⁺CD32B/TT not included on forest plot because n=9 is too small (5 on margetuximab, 4 on trastuzumab) to make analysis meaningful.

2019 ASCO ANNUAL MEETING ANNUAL MEETING Bides are the property of the author, permission required for reuse.

Planned Exploratory PFS Analysis by CD16A Genotype, by CBA

506 patients genotyped (94%)

FF or FV, n=437 of 506 (86%)

VV, n=69 of 506 (14%)

#ASCO19 Slides are the property of the author, permission required for reuse.

Planned Exploratory PFS Analysis by CD16A Genotype, by CBA

506 patients genotyped (94%)

FF, n=192 of 506 (38%)

FV, n=245 of 506 (48%)

Abstract #1000 PRESENTED AT:

2019 A

#ASCO19 Slides are the property of the author, ANNUAL MEETING permission required for reuse

October 2018 Interim OS* for ITT vs CD16A-158F Carriers

158 (41%) of 385 events needed for final OS analysis

Overall Response and Clinical Benefit Rates Complement PFS

	Margetuximab + Chemotherapy (n=262)	Trastuzumab + Chemotherapy (n=262)	P Value
Objective Response Rate (CR+PR), n (%) [95% CI]	58 (22.1%) [17.3–27.7]	42 (16.0%) [11.8–21.0]	0.060*
Clinical Benefit Rate (CR+PR+SD>6 months), n (%) [95% CI]	96 (36.6%) [30.8–42.8]	65 (24.8%) [19.7–30.5]	0.003*
Best Overall Response, n (%)			
Complete Response	7 (2.7%)	4 (1.5%)	
Partial Response	51 (19.5%)	38 (14.5%)	
Stable Disease	149 (56.9%)	147 (56.1%)	
Progressive Disease	35 (13.4%)	46 (17.6%)	
Not Evaluable/Not Available	20 (7.6%)	27 (10.3%)	
Duration of Response (CR, PR), median months (95% CI)	6.1 (4.11–9.13)	6.0 (4.01–6.93)	0.541 ⁺

Response evaluable population (randomized patients with baseline measurable disease): N=524. *Stratified Mantel-Haenszel test *P* value (2-sided). [†]Unstratified log-rank *P* value (2-sided).

Summary of Adverse Events (AEs)

Similar overall safety profiles

	Margetuximab + Chemotherapy (n=264)	Trastuzumab + Chemotherapy (n=265)
Any grade AE, n (%)	258 (97.7)	255 (96.2)
Grade ≥3 AE , n (%)	138 (52.3)	128 (48.3)
SAE , n (%)	39 (14.8)	46 (17.4)
AE leading to treatment discontinuation, n (%)	8 (3.0)	7 (2.6)
AEs resulting in death,* n (%)	2 (0.8) ⁺	2 (0.8) [‡]

Safety Population (randomized patients who received any study treatment): N=529. *No AEs resulting in death were considered related to anti-HER2 study therapy. [†]Pneumonia (n=1), pneumonia aspiration (n=1). [‡]Pneumonia (n=1), acute kidney injury (n=1). SAE=serious AE.

2019 ASCO ANNUAL MEETING ANNUAL MEETING #ASCO19 Slides are the property of the author, permission required for reuse.

AEs Regardless of Causality

	Margetuximab + Chemotherapy (n=264)		Trastuz Chemother	umab + apy (n=265)
Most common AEs, n (%)	All Grade*	Grade ≥3 ⁺	All Grade*	Grade ≥3 ⁺
Fatigue	103 (39.0)	12 (4.5)	92 (34.7)	7 (2.6)
Nausea	81 (30.7)	3 (1.1)	84 (31.7)	1 (0.4)
Neutropenia	73 (27.7)	51 (19.3)	51 (19.2)	30 (11.3)
Diarrhea	59 (22.3)	6 (2.3)	62 (23.4)	5 (1.9)
Anemia	48 (18.2)	12 (4.5)	55 (20.8)	17 (6.4)
Neutrophil count decreased	32 (12.1)	22 (8.3)	35 (13.2)	25 (9.4)
Febrile neutropenia	8 (3.0)	8 (3.0)	12 (4.5)	12 (4.5)
AEs of special interest, n (%)	All Grade	Grade ≥3	All Grade	Grade ≥3
Infusion-related reaction (IRR) [‡]	34 (12.9)	4 (1.5)	10 (3.8)	0
Left ventricular dysfunction	6 (2.3)	3 (1.1)	7 (2.6)	1 (0.4)
Discontinuation due to IRRs, n (%)	3 (1.1)	2 (0.8)	0	0

Safety Population: N=529.

*Incidence \geq 20% in either treatment group.

[†]Incidence \geq 5% in either treatment group.

[‡]All patients received prior trastuzumab. In pivotal trials of trastuzumab, IRRs occurred in 21% to 40% of patients (US package insert).

#ASCO19

Slides are the property of the author, permission required for reuse.

Conclusions

- Margetuximab is a novel Fc-engineered HER2 targeted antibody that stimulates mechanisms of both innate and adaptive immunity
- In patients with HER2+ MBC progressing after trastuzumab, pertuzumab, chemotherapy, and T-DM1:
 - Margetuximab plus chemotherapy improved PFS (CBA: HR=0.76, P=0.033; Inv: HR=0.70, P=0.001), ORR, and CBR, compared with trastuzumab plus chemotherapy
- This is the first prospective analysis of CD16A genotype as predictor of efficacy from anti-HER2 therapy
 - Enhanced PFS benefit with margetuximab in exploratory subpopulation of low-affinity CD16A-158F carriers (HR=0.68, P=0.005)
- Acceptable safety, similar to trastuzumab¹
 - Increased IRRs (primarily low grade) on margetuximab (13% vs 4%), managed with premedications
- Next milestone: second interim OS analysis, expected late 2019

IRR=infusion-related reaction. 1. Thompson LM, et al. Oncologist. 2014;19(3):228-234.

Acknowledgments

- We gratefully acknowledge the patients who participated and their families
- We also thank SOPHIA investigators and the clinical study teams
- The SOPHIA trial is sponsored by MacroGenics, Inc.

Professional medical writing support was provided by Francesca Balordi, PhD, of The Lockwood Group (Stamford, CT, USA), in accordance with Good Publication Practice (GPP3) guidelines, funded by MacroGenics, Inc.

#ASCO19 Slides are the property of the author, permission required for reuse.

SOPHIA Study Investigators (NCT02492711)

Austria – D Egle, A Lang, H Rumpold; Belgium – S Altintas, A Barbeaux, J-F Baurain, M Borms, N Claes, C Confente, I Deleu, L Dirix, C Fontaine, M-P Graas, S Henry, J Mebis, R Poncin, I Spoormans, P Vuylsteke

Canada – O Freedman, S Ghedira, R Ramjeesingh

Czech Republic – Z Kral, B Melichar, K Petráková, J Prausova

Denmark – V Glavicic, EH Jakobsen, J Kenholm, S Langkjer

Finland – J Mattson, M Tanner

France – T Bachelot, E Brain, M Campone, B Coudert, V Dieras, J-M Ferrero, C Foa, R Herve, C Levy, M-A Mouret-Revnier, F Ricci

Germany – B Aktas, N Bangemann, M Banys-Paluchowski, W Eiermann, PA Fasching, G Gebauer, A Giagounidis, E-M Grischke, J Hackmann, O Hoffmann, M Joanna, M Karthaus, A Prechtl. A Schneeweiss. P Wimberger

2019 AS

Israel – N Efrat, D Geffen, G Hadassah, N Karminsky, B Kaufman, I Kuchuk, M Leviov, L Ryvo, B Uziely, R Yerushalmi, I Wolf

Italy – A Ardizzoia, R Berardi, A Bernardo, L Biganzoli, R Bordonaro, M Colleoni, G Curigliano, M D'Amico, B Daniele, M De Laurentiis, A Falcone, G Farina, G Francini, A Frassoldati, D Generali, D Grasso, N La Verde, V Lorusso, G Luppi, P Marchetti, F Montemurro, A Musolino, L Pavesi, P Pedrazolli, A Rocca, E Rota Caremoli, E Ruggeri, A Santoro, V Tinessa, G Tonini

Korea – S-A Im, Y-H Im, S-B Kim, JH Sohn

The Netherlands – M de Boer, F Erdkamp, D Houtsma, J Portielje, R van Alphen

Poland – I Bartosz, B Bauer-Kosinska, D Garncarek-Lange, B Itrych, T Jankowski, Z Nowecki, T Pieńkowski, T Sarosiek, P Wysocki

Portugal – M Abreu, F Cardoso, M Dionisio Puerto Rico – M Acosta

Spain – J Alés Martínez, B Bermejo de las Heras, B Ciraugui, J Cortes Castan, J Dorca Ribugent, M Fernández Abad, L García Estévez, J García Sáenz, J Gavilá Gregori, A Gonzalez Martin, S González Santiago, J Illarramendi Manas, R Márquez Vázguez, M Melé Olivé, S Morales Murillo, L Palomar Abad, J Pérez García, J Ponce Lorenzo, M Ruiz Borrego, C Saura Manich, M Segui Palmer, S Servitja Tormo, E Sevillano Fernández

United Kingdom – P Bezecny, S Chan, A Dhadda, J Graham, C Harper-Wynne, M Hogg, C Intrivici, J Mansi; C Poole

United States – A Agrawal, E Ahn, S Aithal, E Andreopoulou, S Bahadur, S Bailey, R Batra, C Battelli, T Beeker, CM Brenin, U Brown-Glaberman, A Brufsky, D Bruetman, J Carney, H Chew, D Citrin, M Citron, M Cobleigh, S Cole, J Croley, C Croot, B Daniel, R Dichmann, A DiStefano, T Dobbs, R Droder, E Ellis, J Erban, L Fehrenbacher, T Feinstein, E Fleener, W Fusselman, N Gabrail

United States (cont) – C Gallagher, H Ghazal, WJ Gradishar, D Graham, M Grosse-Perdekamp, B Haley, K Harnden, L Hart, J Hrom, S Hurvitz, N lannotti, S Kalmadi, E Kaplan, P Kaufman, M Kemeny, S Kendall, E Krill-Jackson, B Lash, A Lee, A Litvak, P Lowry, K Lu, C Lynch, A Maniam, M Martin, S McCachren, D Medgyesy, S Melin, R Mena, M Meshad, K Miller, A Montero, S Murali, M Muzaffar, B Nguyen, M Ninan, Y Novik, B O'Connor, I Oliff, R Oyola, M Pegram, A Perez, T Pluard, D Riseberg, A Rodriguez, HS Rugo, L Salazar, G Schwartz, N Shah, S Shrestha, B Sleckman, R Somer, S Sonnier, A Stroh, J Suga, E Tan-Chiu, S Thumma, M Tsai, L Vahdat, S Varghese, S Vattigunta, P Verma, J Werner, M Wilkenson, GS Wright, DA Yardley, R Young, A Zahalsky, W Zhang

Abstract #1000 PRESENTED AT:

#ASCO19 lides are the property of the author, ANNUAL MEETING permission required for reuse.