Phase 3 SOPHIA study of margetuximab + chemotherapy vs trastuzumab + chemotherapy in patients with HER2+ metastatic breast cancer after prior anti-HER2 therapies: second interim overall survival analysis

Hope S. Rugo, MD,¹ Seock-Ah Im, MD, PhD,² Fatima Cardoso, MD,³ Javier Cortes, MD, PhD,⁴ Giuseppe Curigliano, MD, PhD,⁵ Mark D. Pegram, MD,⁶ Antonino Musolino, MD, PhD, MSc,⁷ Thomas Bachelot, MD,⁸ Gail S. Wright, MD, FACP, FCCP,⁹ Michelino De Laurentiis, MD, PhD,¹⁰ Peter A. Kaufman, MD,¹¹ Timothy Pluard, MD,¹² Francesco Ricci, MD,¹³ Lupe G. Salazar, MD,¹⁴ Denise A. Yardley, MD,¹⁵ Sutton Edlich,¹⁶ Shengyan Hong, PhD,¹⁶ Edwin Rock, MD, PhD,¹⁶ William J. Gradishar, MD, FASCO, FACP,¹⁷ on behalf of the SOPHIA Study Group

¹University of California San Francisco Helen Diller Family Comprehensive Cancer Center, Breast Oncology and Clinical Trials Education, San Francisco, CA, USA; ²Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea; ³Champalimaud Clinical Center/Champalimaud Foundation, Breast Unit, Lisbon, Portugal; ⁴IOB Institute of Oncology, Quironsalud Group, Madrid & Barcelona; Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; ⁵European Institute of Oncology IRCCS, Division of Early Drug Development, University of Milan, Milan, Italy; ⁶Stanford University/Stanford Cancer Institute, Stanford, California, USA; ⁷University Hospital of Parma, Medical Oncology and Breast Unit, Parma, Italy; ⁸Centre Leon Berard, Medical Oncology Department, Lyon, France; ⁹Florida Cancer Specialists & Research Institute, New Port Richey, FL, USA; ¹⁰National Cancer Institute "Fondazione Pascale," Department of Breast and Thoracic Oncology, Naples, Italy; ¹¹University of Vermont Cancer Center, Breast Oncology, Division of Hematology/Oncology, Burlington, VT, USA; ¹²Saint Luke's Cancer Institute, Kansas City, MO, USA; ¹³Institut Curie, Paris, France; ¹⁴University of Washington/Seattle Cancer Care Alliance, Seattle, WA, USA; ¹⁵The Sarah Cannon Research Institute and Tennessee Oncology PLLC, Nashville, TN, USA; ¹⁶MacroGenics, Inc., Rockville, MD, USA; ¹⁷Northwestern University, Division of Hematology/Oncology, Chicago, IL, USA.

Persistent Unmet Need in HER2+ MBC After Anti-HER2 Therapy

- Current standard of care for HER2-positive MBC
 - -First-line: trastuzumab and pertuzumab with chemotherapy¹⁻³
 - Second-line: T-DM1^{4,5}
- After the above therapies, there is no recognized standard of care
 - -Subsequent therapies include sequential chemotherapy with trastuzumab and/or lapatinib^{6,7}
 - Continued anti-HER2 therapy after progression is preferred, generally in combination with chemotherapy⁸⁻¹¹

HER2=human epidermal growth factor receptor 2; MBC=metastatic breast cancer; T-DM1=ado-trastuzumab emtansine.

^{1.} Baselga J, et al. *N Engl J Med.* 2012;366(2):109-119. 2. Swain SM, et al. *Lancet Oncol.* 2013;14(6):461-471. 3. Swain SM, et al. *N Engl J Med.* 2015;372(8):724-734. 4. Verma S, et al. *N Engl J Med.* 2012;367(19):1783-1791. 5. Diéras V, et al. *Lancet Oncol.* 2017;18(6):732-742. 6. Giordano SH, et al. *J Clin Oncol.* 2018;36(26):2736-2740. 7. Cardoso F, et al. *Ann Oncol.* 2018;29(8):1634-1657. 8. von Minckwitz G, et al. *J Clin Oncol.* 2009;27(12):1999-2006. 9. von Minckwitz G, et al. *Eur J Cancer.* 2011;47(15):2273-2281. 10. Geyer CE, et al. *N Engl J Med.* 2006;355(26):2733-2743. 11. Cameron D, et al. *Oncologist.* 2010;15(9):924-934.

Margetuximab: Fc engineering Alters Fc Receptor Affinities

1. Nordstrom JL, et al. Breast Cancer Res. 2011;13(6):R123. 2. Stavenhagen JB, et al. Cancer Res. 2007;67(18):8882-8890.

Margetuximab: Fc engineering Activates Immune Responses

Trastuzumab vs Margetuximab Fc Receptor Affinities¹

	Binding affinity (K _D , nM) (range)					
Antibody	Trastuzumab	Margetuximab	Fold difference			
	(wild type Fc)	(engineered Fc)	in affinity			
CD16A-158V	356 (348-364)	84 (84-84)	4.2 🕇			
CD16A-158F	595 (584-605)	127 (121-133)	4.7 🕇			
CD32B	59 (58-59)	405 (400-410)	6.9 🖊			

Intent: Enhance Innate Immunity (ADCC)

*Increased CD16A Engagement \rightarrow more potent ADCC stimulation²

[†]Reduced CD32B binding → increased immune activation⁴

Intent: Enhance Adaptive Immunity

ADCC=antibody-dependent cellular cytotoxicity; APC=antigen-presenting cell; CD=cluster of differentiation; NK=natural killer; TAA=tumor-associated antigen.

1. MacroGenics; internal data. 2. Nordstrom JL, et al. Breast Cancer Res. 2011;13(6):R123. 3. Nordstrom JL, et al. J Clin Oncol. 2019;37(suppl 15):Abstr. 1030. 4. Clynes RA, et al. Nat Med. 2000;6:443-446.

Study CP-MGAH22-04 (SOPHIA) Design^{1,2}

CBA=central blinded analysis; HR=hazard ratio; OS=overall survival; PFS=progression-free survival; Q3W=every 3 weeks.

1. Rugo HS, et al. J Clin Oncol. 2016;34(suppl 15):TPS630. 2. Clinicaltrials.gov. NCT02492711. https://clinicaltrials.gov/ct2/show/NCT02492711. Accessed September 30, 2019.

ITT Population (n=536): Baseline Characteristics

Treatment arms balanced	d overall	Margetuximab + Chemotherapy (n=266)	Trastuzumab + Chemotherapy (n=270)	
	Median age	55	56	
	Female sex	266 (100%)	267 (98.9%)	
Demographics	Europe	152 (57%)	138 (51%)	
	North America	85 (32%)	102 (38%)	
	Other region	29 (11%)	30 (11%)	
	ECOG PS 0	149 (56%)	161 (60%)	
	ECOG PS 1	117 (44%)	109 (40%)	
	Metastatic	260 (98%)	264 (98%)	
	Locally advanced, unresectable	6 (2%)	6 (2%)	
Disease Characteristics	Measurable disease by CBA	262 (99%)	262 (97%)	
	≤2 metastatic sites	138 (52%)	144 (53%)	
	>2 metastatic sites	128 (48%)	126 (47%)	
	Hormone receptor positive	164 (62%)	170 (63%)	
	Hormone receptor negative	102 (38%)	98 (36%)	
	Capecitabine	71 (27%)	72 (27%)	
Paakhana ahamatharany	Eribulin	66 (25%)	70 (26%)	
backbolle chemotherapy	Gemcitabine	33 (12%)	33 (12%)	
	Vinorelbine	96 (36%)	95 (35%)	

ECOG=Eastern Cooperative Oncology Group; hormone receptor positive=ER (estrogen receptor)+ and/or PgR (progesterone receptor)+; hormone receptor negative=ER- and PgR-; PS=performance status. This presentation is the intellectual property of the author/presenter. Contact her at <u>Hope.Rugo@ucsf.edu</u> for permission to reprint and/or distribute.

ITT Population (n=536): Prior Cancer Therapy

Treatment arms overall balanced

	Margetuximab + Chemotherapy (n=266)	Trastuzumab + Chemotherapy (n=270)
Settings of prior therapy	î	
Adjuvant and/or neoadjuvant	158 (59%)	145 (54%)
Metastatic only	108 (41%)	125 (46%)
Prior metastatic lines of therapy		
≤2	175 (66%)	180 (67%)
>2	91 (34%)	90 (33%)
Prior anti-HER2 therapy		
(Trastuzumab	266 (100%)	270 (100%)
Pertuzumab	266 (100%)	269 (100%)
T-DM1	242 (91%)	247 (92%)
Lapatinib	41 (15%)	39 (14%)
Other HER2	6 (2%)	6 (2%)
Prior chemotherapy		
Taxane	252 (95%)	249 (92%)
Anthracycline	118 (44%)	110 (41%)
Platinum	34 (13%)	40 (15%)
Prior endocrine therapy	126 (47%)	133 (49%)

Primary PFS by Central Blinded Analysis, Oct-2018 Cutoff

ITT population: N=536. ^aPFS analysis was triggered by last randomization on October 10, 2018, after 265 PFS events occurred. CI=confidence interval. This presentation is the intellectual property of the author/presenter. Contact her at <u>Hope.Rugo@ucsf.edu</u> for permission to reprint and/or distribute.

Investigator-Assessed PFS

Investigator-Assessed PFS (Oct-2018 Cutoff)^a 30% Risk Reduction of Disease Progression

Investigator-Assessed PFS (Sep-2019 Cutoff)^b 29% Risk Reduction of Disease Progression

ITT population: N=536. ^aPFS analysis triggered by last randomization on October 10, 2018, after 265 PFS events. ^bPFS analysis performed as of September 10, 2019, after 430 PFS events occurred. This presentation is the intellectual property of the author/presenter. Contact her at <u>Hope.Rugo@ucsf.edu</u> for permission to reprint and/or distribute.

Investigator-Assessed Response, Clinical Benefit Rates, Sep-2019 Cutoff

	ITT Population (N=536)				
	Margetuximab + Chemotherapy (n=266)	Trastuzumab + Chemotherapy (n=270)	Nominal <i>P</i> Value		
Objective Response Rate (CR+PR), n (%) [95% CI]	67 (25.2%) [20.1–30.9]	37 (13.7%) [9.8–18.4]	0.0006 ^a		
Clinical Benefit Rate (CR+PR+SD>6 months), n (%) [95% CI]	128 (48.1%) [42.0–54.3]	96 (35.6%) [29.9–41.6]	0.0025 ^a		
Best Overall Response, n (%)					
Complete Response	5 (1.9%)	4 (1.5%)			
Partial Response	62 (23.3%)	33 (12.2%)			
Stable Disease	143 (53.8%)	158 (58.5%)			
Progressive Disease	40 (15.0%)	57 (21.1%)			
Not Evaluable/Not Available	16 (6.0%)	18 (6.7%)			
Duration of Response	6.9 (5.45–7.49)	7.0 (5.55–8.15)	0.7400 ^b		

(CR, PR), median months (95% CI)

^a Stratified Mantel-Haenszel test *P* value (2-sided). ^b Stratified log-rank *P* value (2-sided).

ITT Population: Interim OS Analyses (n=536)

Second Interim OS Analysis (Sep-2019 Cutoff)^b

^aOS analysis performed as of October 10, 2018 data cutoff, after 158 (41%) of 385 events needed for final OS analysis had occurred.

^bOS analysis performed as of September 10, 2019 data cutoff, after 270 (70%) of 385 events needed for final OS analysis had occurred.

OS Subgroup Analyses

	Median OS (95	% CI), Months		HR by	
Subgroup type, n (events/total per arm)	Margetuximab + Chemotherapy	Trastuzumab + Chemotherapy		Unstratified Cox Model	95% CI
All patients, n=536 (131/266; 139/270)	21.6 (18.86–24.05)	19.8 (17.54–22.28)	H	0.90	(0.71–1.14)
Capecitabine, n=143 (35/71; 37/72)	23.6 (14.85–NA)	22.1 (17.91–29.01)	⊢♦ −−1	1.00	(0.63–1.59)
Eribulin, n=136 (34/66; 39/70)	23.7 (18.56–28.32)	16.7 (14.39–24.74)	⊢ ● →1	0.73	(0.46–1.17)
Gemcitabine, n=66 (16/33; 14/33)	21.6 (12.02–NA)	22.3 (18.40–35.65)	⊢ •	1.24	(0.59–2.58)
Vinorelbine, n=191 (46/96; 49/95)	20.4 (17.41–25.82)	18.3 (15.84–24.25)	⊢ ● - 1	0.86	(0.57–1.28)
>2 metastatic sites, n=254 (74/128; 77/126)	18.6 (14.29–23.26)	16.8 (14.29–19.45)	⊢ ● H	0.84	(0.61–1.16)
≤2 metastatic sites, n=282 (57/138; 62/144)	25.4 (20.40–NA)	25.4 (19.75–29.04)	⊢ ∎—1	0.93	(0.65–1.33)
≤2 prior lines of Tx ^a , n=355 (88/175; 84/180)	21.6 (18.86–23.98)	21.9 (18.83–27.14)	1	1.02	(0.76–1.38)
>2 prior lines of Tx ^a , n=181 (43/91; 55/90)	24.1 (16.16–NA)	17.5 (15.61–21.03)	⊢ ●i	0.70	(0.47–1.05)
Prior T-DM1 use: yes, n=489 (121/242; 132/247)	22.0 (18.63–24.57)	19.5 (17.45–22.28)	⊢ ● I	0.86	(0.67–1.10)
Prior T-DM1 use: no, n=47 (10/24; 7/23)	18.9 (12.42–NA)	NR (13.67–NA)	⊢	 1.60	(0.60–4.28)
Hormone receptor-, n=200 (50/102; 56/98)	20.6 (16.99–25.40)	17.9 (15.38–22.90)	⊢ ●1	0.88	(0.60–1.30)
Hormone receptor+, n=334 (81/164; 82/170)	22.0 (18.86–28.32)	21.0 (18.40–24.18)	⊢● 1	0.91	(0.67–1.24)
HER2 IHC 3+, n=291 (64/149; 75/142)	23.6 (20.40–NA)	19.6 (17.51–24.25)	⊢ ●1	0.71	(0.51–1.00)
HER2 ISH amplified, n=245 (67/117; 64/128)	18.6 (13.83–24.05)	20.5 (16.79–24.18)	⊢ ∎1	1.17	(0.83–1.65)

Margetuximab Better Trastuzumab Better

^aIn the metastatic setting. IHC=immunohistochemistry; ISH=in situ hybridization; NA=not available (because cannot be calculated); NR=not reached; Tx=treatment. This presentation is the intellectual property of the author/presenter. Contact her at <u>Hope.Rugo@ucsf.edu</u> for permission to reprint and/or distribute.

CD16A Biology Impacts Trastuzumab Outcome in NSABP-B31

CD16A-158 Genotype	Population Prevalence ^{1,2}	IgG1 binding affinity (K _D), nM (range) ³	IgG1 NK cell binding, MFI ± SD ⁴	Ex vivo ADCC ⁵⁻⁸	NSABP-B31 Disease-Free Survival, HR ⁹
V/V	9–11%	411 (403–419)	1,814 ± 507	Greater	0.118
V/F	35–44%		1,257 ± 608	Intermediate	0.336
F/F	47–54%	1,066 (981–1,150)	913 ± 317	Lesser	0.713
Implication	Distribution globally similar	V allotype has higher affinity for IgG1 Fc	V/V NK cells bind more IgG1 than F/F NK cells	V/V effectors generally activate ADCC best	V alleles associate with benefit ^{5,9,10}

MFI=mean fluorescence intensity; NK=natural killer; SD=standard deviation. 1. Lehrnbecher T, et al. *Blood.* 1999;94:4220-4232. 2. Tanaka Y, et al. *Nephrol Dial Transplant.* 2005;20:2439-2445. 3. Stavenhagen JB et al. *Cancer Res.* 2007;67:8882-8890. 4. Koene HR, et al. *Blood.* 1997;90:1109-1114. 5. Musolino A, et al. *J Clin Oncol.* 2008;26:1789-1796. 6. Nordstrom JL, et al. *Breast Cancer Res.* 2011;13:R123. 7. Shields JM et al. *J Biol Chem.* 2002;277:9790-9799. 8. Varchetta S, et al. *Cancer Res.* 2007;67:11991-11999. 9. Gavin PG, et al. *JAMA Oncol.* 2017;3:335-341. 10. Musolino A, et al. *Pharmacogenomics J.* 2016;16:472-477.

Pre-specified Exploratory OS in CD16A-185 F Carriers¹

Pre-specified Exploratory OS in CD16A-158 VV Homozygotes¹

Manual Index Inc.

¹Sep-2019 Cutoff

CD16A-158VV Homozygotes, n=69 of 506 (14%) genotyped

				Chemotherapy (n=37)	Chemotherapy (n=32)	Baseline Characteristic	Margetuximab + Chemotherapy	Trastuzumab + Chemotherapy
	100 ¬		# of events	20	13		(n=37)	(n=32)
			Median OS	19.7 months	33.3 months (16.66–33.31)	Cancer disease history		
			(95% CI)	(15.67–23.89)		Brain, n (%)	8 (22%)	3 (9%)
~	80 -		L	HR by unstratified	ied Cox model, 1.65 I, 0.82–3.32) og-rank <i>P</i>=0.157	Breast, n (%)	10 (27%)	5 (16%)
(%)		۲۲		(95% CI, Unstratified log		Liver, n (%)	16 (43%)	10 (31%)
al	60 -	++-		Median follow-		Lung, n (%)	11 (30%)	13 (41%)
ľ.						Lymph node, n (%)	21 (57%)	16 (50%)
Sul		Median difference	Ч . ^С			HER2 IHC 3+, n (%)	19 (51%)	18 (56%)
rall	40 -	of 13.6 months				Hormone receptor +, n (%)	23 (62%)	18 (56%)
Dvel						ECOG PS 1, n (%)	14 (38%)	16 (50%)
0	20 -			++	+	>60 years of age, n (%)	16 (43%)	5 (16%)
		 Margetuximab + chemotherapy 				>2 prior metastatic lines of therapy, n (%)	15 (41%)	9 (28%)
		 Trastuzumab + chemotherapy 						
	υų	1	I	I	1		Less fa	avorable
		0 10	20	30	40			
		Time from	Randomizatio	n (Months)				
Margetu	ximab	37 34 32 30 29 29 27 23 19 15	5 11 9 5 4	4 4 3 1 1	1 1 1 0			
Trastuz	umab	32 32 31 31 31 30 28 27 20 14	4 11 8 8 4	4 3 3 1 0				

Unbalanced patient characteristics

Adverse Events (AEs), Apr-2019 Cutoff

Similar overall safety profiles				
	Margetuximab + Chemotherapy (n=264)		Trastuzumab + Chemotherapy (n=266)	
Any grade AE, n (%)	260 (98.5)		261 (98.1)	
Any margetuximab or trastuzumab-related AE, n (%)	160 (60.6)	132 (49.6)	
Grade ≥3 AE , n (%)	142 (53.8)	140 (52.6)	
Grade ≥3 margetuximab or trastuzumab -related AE, n (%)	34 (12.9)		22 (8.3)	
Any SAE , n (%)	43 (16.3)		49 (18.4)	
Any margetuximab or trastuzumab-related SAE, n (%)	5 (1.9)		4 (1.5)	
AE leading to treatment ^a discontinuation, n (%)	8 (3.0)		7 (2.6)	
AEs resulting in death, ^b n (%)	3 (1.1) ^c		2 (0.8) ^d	
AEs of special interest, n (%)	All Grade	Grade ≥3	All Grade	Grade ≥3
Infusion-related reaction (IRR) ^e	35 (13.3)	4 (1.5)	9 (3.4)	0
Discontinuation due to IRRs, n (%)	2 (0.6)	0	0	0
LV dysfunction leading to dose delay or discontinuation, n (%)	4 (1.5)	0	6 (2.3)	0

Safety Population (randomized patients who received any study treatment): N=530.

^aIncluding both anti-HER2 study therapy and chemotherapy. ^bNo AEs resulting in death were considered related to anti-HER2 study therapy. ^cPneumonia (n=2), pneumonia aspiration (n=1). ^dPneumonia (n=1), acute kidney injury (n=1). ^eIn pivotal trials of trastuzumab, IRRs occurred in 21% to 40% of patients (US package insert). LV=left ventricular; SAE=serious AE.

Conclusions from SOPHIA Trial

- Margetuximab increased affinity for activating and decreased affinity for inhibitory Fcγ receptors
 Fc engineering intent: coordinate engagement of innate and adaptive immunity
- First Phase 3 head to head comparison to show PFS superiority versus active control trastuzumab
 - Primary analysis (Oct-2018 cutoff): 24% risk reduction in centrally blinded PFS (HR 0.76, P=0.033)
 - Investigator PFS (Sep-2019 cutoff): also favors margetuximab with 29% risk reduction (HR 0.71, nominal *P*=0.0006)
- 2nd interim OS (Sep-2019 cutoff): favors margetuximab (mOS 21.6 vs 19.8 mos; HR=0.89, P=0.326)
- First prospective analysis of CD16A genotype as a predictor of anti-HER2 antibody efficacy (exploratory)
 - Primary PFS analysis (Oct-2018 cutoff), CD16A-F carrier: mPFS difference 1.8 mos (HR 0.68, nominal P=0.005)
 - 2nd interim OS (Sep-2019 cutoff), CD16A-F carriers: mOS difference 4.3 mos (HR=0.79, nominal P=0.087)
- Acceptable safety, similar to trastuzumab¹
 - ≥ Grade 3 adverse events, SAEs, discontinuations, fatal AEs, left ventricular dysfunction all balanced
 - Higher IRRs on margetuximab (13% vs 3%), most on first infusion only, Grade 1-2
 - Infusion substudy: 30-minute infusions without effect on safety, IRR risk, or severity²

• Next milestone: final OS analysis (after 385 events), expected late 2020

1. Thompson LM, et al. *Oncologist.* 2014;19(3):228-234. 2. Gradishar WJ, et al., SABCS 2019, #P1-18-04, 11-Dec-2019 from 5PM to 7PM, Hall 1. This presentation is the intellectual property of the author/presenter. Contact her at <u>Hope.Rugo@ucsf.edu</u> for permission to reprint and/or distribute.

Acknowledgments

- We gratefully acknowledge participating patients and their families
- We also thank SOPHIA investigators and the clinical study teams
- The SOPHIA trial is sponsored by MacroGenics, Inc.

Professional medical writing support was provided by Francesca Balordi, PhD, and Emily Cullinan, PhD, of The Lockwood Group (Stamford, CT, USA), in accordance with Good Publication Practice (GPP3) guidelines, funded by MacroGenics, Inc.

SOPHIA Study Investigators (NCT02492711)

Austria – D Egle, A Lang, H Rumpold; Belgium – S Altintas, A Barbeaux, J-F Baurain, M Borms, N Claes, C Confente, I Deleu, L Dirix, C Fontaine, M-P Graas, S Henry, J Mebis, R Poncin, I Spoormans, P Vuylsteke

Canada – O Freedman, S Ghedira, R Ramjeesingh

Czech Republic – Z Kral, B Melichar, K Petráková, J Prausova

Denmark – V Glavicic, EH Jakobsen, J Kenholm, S Langkjer

Finland – J Mattson, M Tanner

France – T Bachelot, E Brain, M Campone, B Coudert, V Dieras, J-M Ferrero, C Foa, R Herve, C Levy, M-A Mouret-Reynier, F Ricci

Germany – B Aktas, N Bangemann, M Banys-Paluchowski, W Eiermann, PA Fasching, G Gebauer, A Giagounidis, E-M Grischke, J Hackmann, O Hoffmann, M Joanna, M Karthaus, A Prechtl, A Schneeweiss, P Wimberger Israel – N Efrat, D Geffen, G Hadassah, N Karminsky, B Kaufman, I Kuchuk, M Leviov, L Ryvo, B Uziely, R Yerushalmi, I Wolf

Italy – A Ardizzoia, R Berardi, A Bernardo, L Biganzoli, R Bordonaro, M Colleoni, G Curigliano, M D'Amico, B Daniele, M De Laurentiis, A Falcone, G Farina, G Francini, A Frassoldati, D Generali, D Grasso, N La Verde, V Lorusso, G Luppi, P Marchetti, F Montemurro, A Musolino, L Pavesi, P Pedrazolli, A Rocca, E Rota Caremoli, E Ruggeri, A Santoro, V Tinessa, G Tonini

Korea – S-A Im, Y-H Im, S-B Kim, JH Sohn

The Netherlands – M de Boer, F Erdkamp, D Houtsma, J Portielje, R van Alphen

Poland – I Bartosz, B Bauer-Kosinska, D Garncarek-Lange, B Itrych, T Jankowski, Z Nowecki, T Pieńkowski, T Sarosiek, P Wysocki

Portugal – M Abreu, F Cardoso, M Dionisio

Puerto Rico – M Acosta

Spain – J Alés Martínez, B Bermejo de las Heras, B Cirauqui, J Cortes Castan, J Dorca Ribugent, M Fernández Abad, L García Estévez, J García Sáenz, J Gavilá Gregori, A Gonzalez Martin, S González Santiago, J Illarramendi Manas, R Márquez Vázquez, M Melé Olivé, S Morales Murillo, L Palomar Abad, J Pérez García, J Ponce Lorenzo, M Ruiz Borrego, C Saura Manich, M Segui Palmer, S Servitja Tormo, E Sevillano Fernández

United Kingdom – P Bezecny, S Chan, A Dhadda, J Graham, C Harper-Wynne, M Hogg, C Intrivici, J Mansi; C Poole

United States – A Agrawal, E Ahn, S Aithal, E Andreopoulou, S Bahadur, S Bailey, R Batra, C Battelli, T Beeker, CM Brenin, U Brown-Glaberman, A Brufsky, D Bruetman, J Carney, H Chew, D Citrin, M Citron, M Cobleigh, S Cole, J Croley, C Croot, B Daniel, R Dichmann, A DiStefano, T Dobbs, R Droder, E Ellis, J Erban, L Fehrenbacher, T Feinstein, E Fleener, W Fusselman, N Gabrail United States (cont) – C Gallagher, H Ghazal, WJ Gradishar, D Graham, M Grosse-Perdekamp, B Haley, K Harnden, L Hart, J Hrom, S Hurvitz, N Iannotti, S Kalmadi, E Kaplan, P Kaufman, M Kemeny, S Kendall, E Krill-Jackson, B Lash, A Lee, A Litvak, P Lowry, K Lu, C Lynch, A Maniam, M Martin, S McCachren, D Medgyesy, S Melin, R Mena, M Meshad, K Miller, A Montero, S Murali, M Muzaffar, B Nguyen, M Ninan, Y Novik, B O'Connor, I Oliff, R Oyola, M Pegram, A Perez, T Pluard, D Riseberg, A Rodriguez, HS Rugo, L Salazar, G Schwartz, N Shah, S Shrestha, B Sleckman, R Somer, S Sonnier, A Stroh, J Suga, E Tan-Chiu, S Thumma, M Tsai, L Vahdat, S Varghese, S Vattigunta, P Verma, J Werner, M Wilkenson, GS Wright, DA Yardley, R Young, A Zahalsky, W Zhang