

A Phase 1, Open-Label, Dose Escalation Study of Enoblituzumab in Combination with Pembrolizumab in Patients with Select Solid Tumors

<u>Charu Aggarwal</u>¹, Anthony Joshua², Robert Ferris³, Scott Antonia⁴, Osama Rahma⁵, Anthony Tolcher⁶, Roger B. Cohen¹, Yanyan Lou⁷, Ralph Hauke⁸, Nicholas Vogelzang⁹, Dan Zandberg¹⁰, Arash Kalebasty¹¹, Victoria Atkinson¹², Alex Adjei¹³, Mahesh Seetharam¹⁴, Ariel Birnbaum¹⁵, Andrew Weickhardt¹⁶, Vinod Ganju¹⁷, Riva Bondarenko¹⁸, Linda Peng¹⁸, Tony Wu¹⁸, Scott Currence¹⁸, Jan Baughman¹⁸, Ezio Bonvini¹⁸, Stacie Goldberg¹⁸, Jon Wigginton¹⁸, Nehal Lakhani¹⁹

¹University of Pennsylvania/Abramson Cancer Center, Philadelphia, PA; ²St. Vincent's Hospital, Sydney, Australia; ³University of Pittsburgh, Pittsburgh, PA; ⁴Moffitt Cancer Center, Tampa, FL; ⁵Dana Farber Cancer Institute, Boston, MA; ⁶START, San Antonio, TX; ⁷Mayo Clinic, Jacksonville, FL; ⁸Nebraska Cancer Specialists, Omaha, NE; ⁹Comprehensive Cancer Centers of Nevada, Las Vegas, NV; ¹⁰University of Maryland, Baltimore, MD; ¹¹Norton Cancer Institute, Louisville, KY; ¹²University of Queensland, Brisbane, Australia; ¹³Mayo Clinic, Rochester, MN; ¹⁴Mayo Clinic, Scottsdale, AZ; ¹⁵Rhode Island Hospital, Providence, RI; ¹⁶Olivia Newton-John Cancer Research Institute, Melbourne, Australia; ¹⁷Peninsula and Southeast Oncology, Frankston, Australia; ¹⁸MacroGenics, Inc., Rockville, MD; ¹⁹START Midwest, Grand Rapids, MI

ClinicalTrials.gov #NCT02475213 Abstract #O24

Disclosures

Charu Aggarwal, M.D., M.P.H.:

- Institutional Research Funding: Merck, Incyte, MacroGenics, MedImmune
- Advisory Board/ Consultant: BMS, Celgene, Genentech-Roche, Astra Zeneca
- Speakers Bureau: None

This study was sponsored by MacroGenics, Inc.

Enoblituzumab is not approved by the Food and Drug Administration

Rationale for Targeting B7-H3 in Cancer

- B7-H3 expression associated w/adverse clinical features/outcome in various solid tumors
- B7-H3 expression may inversely correlate w/responsiveness to anti-PD-1 therapy*

High Rate of B7-H3 Positivity Across Broad Range of Solid Tumors

Majority of B7-H3-positive tumors express high levels of B7-H3 (2+ or above)

		IHC Summary of >1,400 Tumor Tissue Samples Screened					
	Potential Indications:	B7-H3 Positive*		2+ or Above			
Enoblituzumab + Pembrolizumab Combination Study Indications Evaluated	Head and Neck	19/19	100%		19/19	100%	
	Kidney Cancer	77/78	99%		75/78	96%	
	Glioblastoma	65/66	98%		63/66	95%	
	Thyroid Cancer	34/35	97%		33/35	94%	
	Mesothelioma	41/44	93%		39/44	89%	
	Melanoma	132/146	90%		94/146	64%	
	Prostate Cancer	88/99	89%		51/99	52%	
	Pancreas Cancer	69/78	88%		45/78	58%	
	Bladder	134/156	86%		123/156	79%	
	Lung Cancer	324/379	85%		300/379	79%	
	Breast Cancer	189/249	76%		156/249	63%	
	Ovarian Cancer	59/79	75%		36/79	46%	

Limited expression in normal tissue \rightarrow favorable profile for targeting B7-H3 with CD3 bispecific (orlotamab, SITC #P305, #P366) and/or ADC (MGC018, SITC #P306)

* B7-H3 positivity reflects any grade staining via fixed tumor microarray; B7-H3 is expressed on tumor cells as well as tumor-associated vasculature.

С Stu

Enoblituzumab: Fc-optimized, Anti-B7-H3 Antibody

Candidate	• Humanized, Fc-optimized anti B7-H3 antibody
Function/MoA	 Enhances Fc-mediated activities, including ADCC Increases binding to activating FcγR, CD16A, including low-affinity allele Decreases binding to inhibitory FcγR, CD32B Coordinate engagement of innate and adaptive immunity
Key Clinical Programs	 Phase 1b combination study (with pembrolizumab) enrolled Investigator-sponsored study ongoing in neoadjuvant prostate cancer (SITC #P338) Combination study with anti-PD-1 (MGA012*) planned

* Also known as INCMGA00012; see SITC #P669, P313, P336.

Rationale for Enoblituzumab+Pembrolizumab Combination

<u>Hypothesis</u>: Coordinate engagement of innate and adaptive immunity with enoblituzumab and anti-PD-1 may mediate greater antitumor activity than either single agent alone

- Activity of Fc-optimized antibody (margetuximab, anti-HER2) combined with pembrolizumab benchmarked favorably vs. historical anti-PD-1 monotherapy experience in gastric carcinoma^(a)
- Preliminary data indicates enoblituzumab can modulate T-cell repertoire in treated patients
 - Enhanced peripheral T-cell clonality and clone abundance^(b)
 - Enhanced local T-cell infiltration in prostate cancer^(c)
- Combined targeting of B7-H3 and PD-1/PD-L1 in preclinical tumor models can mediate greater antitumor activity than either single agent alone^(d)
- NK cells may express PD-1, and PD-1/PD-L1 interaction can impair NK cell function PD-1/PD-L1 blockade can enhance NK cell function and preclinical antitumor activity^(e)

(a) Presented at ASCO 2018, #4030; (b) Unpublished; (c) Presented at SITC 2018, #P338; (d) Lee, et al., Cell Research, 2017; (e) Hsu, et al., J Clin Invest, 2018.

Rationale for Enoblituzumab+Pembrolizumab Combination

Coordinate engagement of innate and adaptive immunity to mediate tumor regression

Enoblituzumab+Pembrolizumab Study Design

Society for Immunotherapy of Cancer 2018

Safety Profile

	No. (%) of Patients			
	All Grades			
Drug-Related Adverse Event	Total	<u>></u> Grade 3		
(≥5% of Patients)	(N=133)	(N=133)		
Any adverse event	115 (86.5)	36 (27.1)		
Infusion-related reaction	73 (54.9)	9 (6.8)		
Fatigue	37 (27.8)	2 (1.5)		
Rash	14 (10.5)	1 (0.8)		
Nausea	12 (9.0)	0		
Pyrexia	12 (9.0)	0		
Lipase increased	11 (8.3)	8 (6.0)		
Arthralgia	10 (7.5)	0		
Decreased appetite	9 (6.8)	2 (1.5)		
Diarrhea	9 (6.8)	1 (0.8)		
Hypothyroidism	8 (6.0)	0		
Anemia	7 (5.3)	1 (0.8)		
Pneumonitis	7 (5.3)	2 (1.5)		
Chills	7 (5.3)	0		

	No. (%) of Patients		
	All Grades		
Immune-Related Adverse Events of Special Interest (AESI)	Total (N=133)	<u>></u> Grade 3 (N=133)	
Pneumonitis	5 (3.8)	2 (1.5)	
Myocarditis	2 (1.5)	1 (0.8)	
Diarrhea	1 (0.8)	1 (0.8)	
Adrenal insufficiency	1 (0.8)	1 (0.8)	
Colitis	1 (0.8)	0	

SITC **2018**

• Drug-related AE:

– Leading to treatment discontinuation: 6.8%

- Leading to death: 0.8% (1 patient with pneumonitis)
- Nature of events consistent with enoblituzumab or pembrolizumab alone

Data cut-off date: October 12, 2018.

Summary of Overall Best Response Status (RECIST)

	Anti-PD-1/PD-L1 Naïve					
Indication	SCCHN	NSCLC	SCCHN	NSCLC	Urothelial Cancer	Cutaneous Melanoma
Total Treated Patients	21	16	24	25	21	14
Age (years) Mean ± SD Median (Range)	62.8 ± 9.13 65.0 (44 - 74)	65.7 ± 7.75 65.0 (50 - 79)	62.7 ± 9.99 62.0 (34 - 76)	64.2 ± 8.73 63.0 (50 - 83)	67.1 ± 9.39 70.0 (40 - 79)	60.5 ± 15.24 63.0 (25 - 79)
Gender Female Male	3 (14.3) 18 (85.7)	8 (50.0) 8 (50.0)	2 (8.3) 22 (91.7)	10 (40.0) 15 (60.0)	6 (28.6) 15 (71.4)	3 (21.4) 11 (78.6)
Response Evaluable	18	14	19	21	17	13
PR	6/18 (33.3%)	5/14 (35.7%)	0	1/21 (4.8%)	1/17 (5.9%)	1/13 (7.7%)
SD	5/18 (27.8%)	8/14 (57.1%)	9/19 (47.4%)	12/21 (57.1%)	8/17 (47.1%)	5/13 (38.5%)
PD	7/18 (38.9%)	1/14 (7.1%)	10/19 (52.6%)	7/21 (33.3%)	8/17 (47.1%)	6/13 (46.2%)
NE	0	0	0	1/21 (4.8%)	0	1/13 (7.7%)

PR=Confirmed Partial Response, SD=Stable Disease, PD=Progressive Disease, NE=Not Evaluable

Antitumor Activity in SCCHN Patients, Anti-PD-1/PD-L1 Naïve

Tumor regression in patients with SCCHN, irrespective of HPV status

Antitumor Activity in SCCHN Patients, Anti-PD-1/PD-L1 Naïve

Antitumor Activity in NSCLC Patients, Anti-PD-1/PD-L1 Naïve, PD-L1<1%

Antitumor Activity in NSCLC Patients, Anti-PD-1/PD-L1 Naïve, PD-L1<1%

Society for Immunotherapy of Cancer 2018

Enoblituzumab+Pembrolizumab Combination Benchmarks Favorably

SCCHN	Study Results				
Agent (Study)	Enoblituzumab +Pembrolizumab	Nivolumab (CM-141) ^(a)	Pembrolizumab (KN-012) ^(b)	Pembrolizumab (KN-040) ^(c)	
Ν	18	240	174	247	
ORR	33.3%	13%	16%	15%	

NSCLC	Study Results				
Agent (Study)	Enoblituzumab +Pembrolizumab	Nivolumab (CM-057) ^(d)	Nivolumab (CM-017) ^(e)	Pembrolizumab (KN-001) ^(f)	
Histology	Both	Non-Squamous	Squamous	Both	
Ν	14	108	54	87	
ORR	35.7%	9%	17%	8%	

(a) Ferris, et al., 2016, N Eng J Med; (b) Keytruda® package insert; (c) Cohen, et al., 2017, ESMO LBA45; (d) Borghaei, et al., 2015, NEJM; (e) Brahmer, et al., 2015, NEJM; (f) Garon, et al., 2015, NEJM

Conclusions

- Enoblituzumab/pembrolizumab combination demonstrated acceptable safety profile
- Rate of immune-related adverse events comparable to experience w/anti-PD-1 monotherapy
- In anti-PD-1/PD-L1 naïve patients treated with enoblituzumab+pembrolizumab, objective response rates benchmark favorably with historical experience with anti-PD-1 monotherapy SCCHN (post platinum chemotherapy): 33.3%
 NSCLC (PD-L1 <1%): 35.7%
- Further investigation of enoblituzumab+anti-PD-1 combination is warranted in patients with SCCHN and NSCLC, including in combination with chemotherapy
- Given expression patterns of B7-H3, further investigation of combination of enoblituzumab and anti-PD-1 is warranted in other tumor types, including both checkpoint-naïve and experienced populations

Thank you to the patients and their families who participated in this study.